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Abstract

Determining the amount of sequestered carbon in soils and monitoring soil health1

in farmlands is an important climate change problem. Motivated by the lack of2

scalable and inexpensive techniques for in-situ soil health monitoring, we focus3

on low-voltage nuclear magnetic resonance (NMR) spectroscopy as a promising4

new approach and develop a reinforcement learning technique to modulate NMR5

pulses for rapid atomic abundance assessment of soils. Our preliminary results6

derived using Monte Carlo sampling and parallelized OpenAI Gym training show7

the promise of our RL-based approach.8

1 Introduction9

Maintaining and monitoring soil health is a crucial challenge in the battle against climate change,10

particularly in the agricultural sector [1]. Soil degradation diminishes soil fertility and can lead11

to desertification, compelling farmers to resort to methods such as deforestation to meet growing12

food demand [2]. Furthermore, soil degradation and erosion lead to the release of sequestrated soil13

carbon stocks, which make up 2-3 times the carbon content of the atmospheric carbon pool [3].14

Hence, even small changes in soil carbon stocks can have disastrous effects on the atmospheric CO215

concentration. Important challenges in the monitoring of soil health include determining soil carbon16

concentration, assessing soil fertility, and identifying heavy metal contaminants. These challenges17

are often considered separately, but they share a common goal: accurately determining the atomic18

abundance (i.e., atomic concentration) of key soil elements.19

Current soil testing techniques are able to identify these concentrations through combusting or reacting20

soil extracts and observing the reactions. However, these techniques have fundamental limitations21

that hinder their effectiveness for broader climate objectives. Firstly, due to the nature of these22

tests, they must occur in controlled laboratory settings, leading to costs (in USD) of $10-$50/sample23

for basic fertility and contaminant testing and up to $3000/sample for more comprehensive testing24

[4]. It has been estimated that to develop a reliable soil profile, soil testing should occur every few25

meters [5], meaning that this type of soil testing becomes prohibitively expensive even on the scale26

of a single farm. These scalability concerns hinder large-scale data collection efforts, which are27

important to identify and detect changes in atomic abundance. Being able to accurately detect these28

changes enables us to quantify the effects of different sustainable farming practices [6, 7], as well29

as identify opportunities for their implementation. Furthermore, soil carbon quantification methods30

incur measurement errors when processing samples, [8], which undermine the reliability of soil31

carbon crediting programs, an integral part of the larger carbon market model for decarbonization.32
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These limitations of current common soil testing techniques motivates the design of a reliable,33

scalable method for rapid atomic abundance measurement in soils. In this work, we use low-voltage34

NMR spectroscopy as a promising new approach for in-situ soil monitoring and present a novel35

reinforcement learning framework for modulating low-voltage NMR to perform rapid in-situ atomic36

abundance assessment. First, we present a fast, robust simulator for generating large quantities of37

NMR spectroscopy data able to simulate the spin dynamics of different soil samples in parallel. We38

then demonstrate how to utilize this simulator to train a reinforcement learning agent capable of39

modulating an NMR pulse sequence for the purpose of determining the carbon concentrations of40

various coffee samples, which we use as a soil simulant.41

2 Background42

We start with some necessary background for NMR spectroscopy. Nuclear magnetic resonance43

is a physical phenomenon wherein the nuclear spins of atomic nuclei contained in a magnetic44

field are exposed to electromagnetic radiation causing the spins to precess before returning back45

in line with the magnetic field. This phenomenon is analogous to a spinning top being knocked46

over, precessing before eventually returning to rotation around the vertical axis. Nuclear magnetic47

resonance spectroscopy is a measurement technique based on this phenomenon, in which a substance48

is placed in a strong magnetic field and is exposed to a fixed sequence of radio-frequency pulses49

causing the atomic nuclei to emit energy at different frequencies according to their nuclear spin50

characteristics. The electromagnetic emission is measured at an axis perpendicular to the direction of51

the magnetic field, giving a signal known as the free induction decay (FID) [Figure 2a]. The Fourier52

transform of this signal is computed to obtain the NMR spectra [Figure 2b], and regression-based53

techniques are used to compare this spectra to previously sampled spectra for identification and54

analysis. NMR spectroscopy is most commonly used in medicine for a procedure known as Magnetic55

Resonance Imaging (MRI) to produce high quality images of human anatomy, but also has many56

prevalent applications in food science, environmental monitoring, and various engineering fields57

[9, 10, 11, 12]. A current area of emerging NMR research is centered around developing and applying58

low-voltage NMR systems. These systems are of interest for soil monitoring because of their relative59

low-cost, as well as their ability to determine atomic abundance in situ. This is a crucial extension to60

traditional measurement techniques for atomic abundance, since it addresses many of the scalability61

concerns mentioned above.62

3 Methods63

In this work, we aim to perform atomic abundance assessment using Nuclear Magnetic Resonance64

spectroscopy as a candidate procedure. As noted earlier, this assessment is useful for measuring65

soil carbon, fertility assessment, and heavy metal contaminant identification, which are all crucial66

aspects of maintaining soil health. Traditional NMR spectroscopy relies on applying a fixed pattern of67

radio-frequency pulses (which can be seen in Figure 1c) to the sample of interest and then performing68

regression-based techniques between the measured spectra and laboratory measurements. Regression-69

based techniques have been shown to fail when applied to samples outside of the training distribution70

[13], which often occurs in practice when considering the vast array of chemical compositions of71

different soil samples [14]. Owing to a lack of data, we propose to use reinforcement learning to72

learn the best policy for application of radio-frequency pulses in determining atomic abundance. Our73

reinforcement learning framework has 3 components: a Monte Carlo sampling procedure to represent74

a soil sample as a set of atomic spins, a parallelizable training environment where the agent can75

modulate the radio-frequency pulses, and a candidate reward model that will enable us to determine76

atomic abundance. We detail each component below.77

3.1 Monte Carlo sampling78

To train the agent in simulations, we must first create a representation for a soil sample that the79

agent can interact with. We represent a soil sample as a collection of atomic spins, where each80
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spin is characterized by it’s gyro-magnetic ratio γ, T1 relaxation time, and T2 relaxation time (see81

Appendix A). To calculate a representative set of spins for a given soil sample, a Monte Carlo82

sampling procedure is used. We begin with the NMR spectra of the soil sample, and propose 383

distributions from which the gyro-magnetic ratio, T1 relaxation time, and T2 relaxation time can be84

sampled to determine a random spin. As the initial distributions are up to our determination, the85

agent can learn the optimal policy for any specified spin distribution. After a spin is sampled, the86

NMR spectra is computed for the current set of spins, and the difference between the target spectra87

and the sampled spectra is computed using a weighted average of the absolute mean squared error88

and phase mean squared error. If this difference is below a set threshold, the spin is accepted into89

the set, and otherwise it is rejected and removed from the set. This threshold is set depending on90

the physical parameters of the experiment and decreases as more spins are accepted, which makes91

sense in practice because as spins are accepted into the sample, our target spectra should continue to92

approach the desired spectra. This procedure is repeated until a desired number of spins are accepted,93

or a sampling limit is reached.94

3.2 Parallel training environment95

Given a set of spins, we built an NMR simulator (see Appendix A) that is a modified OpenAI96

Gymnasium environment, capable of simulating spin dynamics given the pulse sequence that is97

applied. The state space of our simulator is the measured magnetization in the X and Y directions,98

Mx, My respectively, as well as the current maximum transverse magnetization Mmaxt
, which99

is calculated by maxt
√
M2

xt
+M2

yt
. It is important to note that the state does not include any100

information about the underlying spins, as would be the case in a real NMR deployment. The action101

space is a continuous variable with relatively high magnitude with respect to the larger magnetic field,102

as would be in a low-voltage NMR set up. To train an agent capable of handling the wide distribution103

of soils, we need the agent to interact with many different spinsets and simulator characteristics such as104

the temperature TK , magnetic field strength B0, and measurement noise. This motivated an important105

step in the training pipeline of our agent, parallelizing the NMR simulator so that the agent learns106

from interactions with a variety of spinsets and simulator configurations simultaneously. We utilized107

the SubprovVecEnv class built into OpenAI Gymnasium to vectorize our Markov Decision Process108

(MDP) – the vectorized MDP formalized as a tuple (Sn, An, Psa, γ, R) . Our state and action spaces109

have been transformed to be n independent states and actions, however, our probability distribution110

matrix and reward function remain the same over all environments and are thus unchanged in the111

vectorized MDP. This step is crucial to making this approach feasible, as it allows us to parallelize112

training (i.e., process many soil samples simultaneously). This parallelism drastically improves the113

speed at which the reinforcement learning model converges to the optimal policy, as well as the114

stability of the training due to the averaging of noise across different environments where the same115

sample was processed.116

3.3 Reward model117

An important step in the training pipeline is designing the reward function in a manner such that the118

pulse sequence learned by the agent gives information that is valuable for an end-user attempting119

to calculate atomic abundance. In this section, we present the design of the reward model used in120

the training of our agent, and delve into how this model helps us achieve our final goal. The reward121

model for each episode is of the form R =
∑T

t=1 γ
t × Mmaxt

, where T is the total time in the122

episode, γ is a discount factor, and Mmaxt
is the maximum observed transverse magnetization at123

time t. The goal of this reward model is to have the learned pulse sequence obtain the maximum124

possible transverse magnetization by knocking as many spins into the the transverse direction as125

possible. Since our radio-frequency pulse is tuned to only interact with the atomic nuclei of the126

element of interest, the maximum magnetization we can achieve is a function of the abundance. Thus,127

if the maximum transverse magnetization achieved over the episode is monotonic with respect to the128

atomic concentration, then atomic abundance can be learned directly from MmaxT
.129
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(a) Standard Pulse Max Magnetization (b) Model Max Magnetization

(c) NMR Pulse Sequences (d) Predictions of Atomic Abundance

Figure 1: Results from RL Validation Experiments

4 Results and discussion130

We trained a standard PPO agent for 5,000,000 timesteps across a parallelized environment containing131

50 spinsets derived from a fixed distribution (see Appendix B). An example pulse sequence that is132

learned by the agent can be seen in Figure 1c. The agent tends to utilize the extremes of the action133

space to obtain the maximum transverse magnetization. We then utilize our Monte Carlo sampling134

procedure on real NMR spectra obtained from a serial dilution test of caffeine (see Appendix B),135

which we use as a soil simulant due to the controllable nature of the underlying atomic concentrations.136

We then compared the maximum observed transverse magnetization achieved by the reinforcement137

learning agent to that achieved by the standard 1D NMR pulse sequence across the spinsets generated138

by the Monte Carlo sampling procedure. We can see in Figure 1a that the maximum observed139

magnetization achieved by the reinforcement learning agent is monotonically increasing with respect140

to the caffeine concentration, however, the same cannot be said for that achieved by the standard141

pulse sequence (1b). Another common method for atomic abundance calculation in standard 1D142

NMR is calculating the integral of the observed transverse magnetization, however, in Figure 1c it143

can be seen that this method also fails to achieve monotonicity in the same set up that our agent144

achieves monotonicity in.145

The success of our agent in achieving monotonicity in cases where standard atomic abundance146

techniques fail motivates further exploration into machine-learning for dynamic pulse sequencing.147

Furthermore, the relatively low magnitude of the external magnetic field compared to the applied148

pulsing field highlights the feasibility of implementing this approach in a low-voltage NMR setup.149

While we validate our approach on a simple data set, where coffee is used as a soil simulant, further150

work can be done to extend this approach to a larger distribution of real soils. Furthermore, for the151

model itself, questions remain about the optimal choices of training hyper-parameters, alternative152

reinforcement learning models, and monitoring the spoiling of the underlying spins so that statistically153

independent samples can be collected in practice.154
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(a) Free Induction Decay Signal of Caffeine Samples (b) NMR Spectra of Caffeine Samples

Figure 2: Real NMR Data of the Serial Dilution Caffeine Dataset

A203

The time evolution of the magnetization components Mx(t), My(t), and Mz(t) in the presence of a204

magnetic field B(t) can be described by the following differential equations:205

dMx(t)

dt
= γ (M(t)×B(t))x − Mx(t)

T2
(1)

dMy(t)

dt
= γ (M(t)×B(t))y −

My(t)

T2
(2)

dMz(t)

dt
= γ (M(t)×B(t))z −

Mz(t)−M0

T1
(3)

These macroscopic equations, known as the Bloch equations, detail the underlying calculations that206

are done to calculate how the spins evolve with respect to time. γ, the gyromagnetic ratio, determines207

how fast the spin revolves around the external megnetic field. B(t), the overall magnetic field, is208

the sum of the vectors detailing the external magnetic field, B0, and Bx, the magnetic field applied209

by the model in the x direction. In our experiment, the ratio of B0 to Bx is 1 to 0.2, which is small210

in terms of typical NMR spectroscopes, but typical for a low-voltage NMR spectroscope. T1 and211

T2 are the relaxation variables, which detail how fast the spin returns back to being in line with the212

external magnetic field after the pulse sequence is ended. Our NMR simulator uses these equations to213

determine the state of our environment, however, the state does not contain information about the214

spins themselves, but rather the magnetization that is being observed, as would be the case in practice.215

B216

The dataset used for the validation portion of our experiment consists of NMR scans of a series of217

caffeine that is repeated diluted. The raw signals of these scans can be seen in Figure 2a, which was218

taken over 8 hours and the averaged to obtain a one second interval. This was done in a classical219

NMR machine and demonstrates the low noise to signal ratio of even a highly controlled NMR setup.220

The Fourier transform of these signals is computed to obtain the NMR spectra of these samples,221

which can be seen in figure 2b. Our initial distribution for the Monte Carlo sampling procedure is222

obtained from the 99th percentile of points in the sum of the NMR spectras. This is reasonable in223

practice as we can slowly collect small soil samples as this practice is used in situ, and occasionally224

send a combined sample back to a lab to update our sampling distribution.225
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