
Sampling without stratification: end-to-end methods
for farm-scale soil carbon monitoring

by

Jenny Moralejo

S.B. in Computer Science and Engineering
and Mathematical Economics

Massachusetts Institute of Technology (2024)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

©2024 Jenny Moralejo.
This work is licensed under a CC BY-NC-SA 4.0.

The author hereby grants MIT a nonexclusive, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis,
or release the thesis under an open-access license.

Authored by: Jenny Moralejo
Department of Electrical Engineering and Computer Science
August 23, 2024

Certified by: Sherrie Wang
Assistant Professor of Mechanical Engineering
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Sampling without stratification: end-to-end methods for

farm-scale soil carbon monitoring

by

Jenny Moralejo

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2024, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Reversing the effects of climate change requires drawing gigatons of carbon dioxide out
of the atmosphere and sequestering it in chemical, biological, or mineralogical forms.
Within the Earth system, soils represent the largest terrestrial stock of carbon [6], and
monitoring soil carbon is essential both for soil conservation and for efforts to reduce
atmospheric carbon dioxide levels. Agricultural soil carbon sequestration has been
proposed as an intervention to mitigate atmospheric carbon levels. However, in order
for soil carbon sequestration to be viable both scientifically and economically, e.g. in
a carbon crediting system, reliable ways of monitoring, validating, and predicting soil
carbon must be developed. Current measurement methodologies are prohibitively
costly to apply at global scale [23]. The thesis simulates and analyzes simulated field-
level soil carbon data to train machine learning models which perform 3 tasks in an
end-to-end fashion: (1) determining soil carbon stocks in unsampled areas based on
sparse measurement data, (2) leveraging historical data to predict future changes to
soil carbon levels, and (3) determining the optimal number and siting of samples for
the next measurement cycle, to maximize the predictive power achieved per dollar
spent on measurement.

Thesis Supervisor: Sherrie Wang
Title: Assistant Professor of Mechanical Engineering

3

4

Acknowledgments

First and foremost, I would like to thank my advisor Professor Sherrie Wang and my
mentor Dr. Evan Coleman for our numerous meetings and mentorship. I’m incredibly
grateful to have learned from you both and I’ve taken away so much through your
expertise and passion for the space! Additionally, I am fortunate to have had amazing
mentors and lab mates. I would like to thank everyone in the Earth Intelligence Lab
who have given me invaluable guidance and feedback and have made every day in
lab so fun and exciting: Dr. Jonathan Giezendanner and Dr. Yuhao Nie; future Drs.
(!) Kerri Lu, Qidong Yang, Jordi Laguarta Soler, and Chenhui Zhang; fellow M.Engs
Zitong Chen and Stephen Campbell; and Eldar Urkumbayev. I am very lucky to have
had teachers who I’ve learned so much from and have continued to help mentor me
throughout the ups and downs of undergrad and M.Eng. Thank you Dr. Christina Ji
and future Dr. Fankeng Sun! I would like to thank the MIT EECS office, especially
Jessica Zdon-Smith for the guidance, perspective, and advice throughout this past
year. Finally, I would like to thank my family and friends for their constant support.

The only reason I am able to get here is because of the wonderful people in my
corner who have helped me throughout my life. Thank you all very much!

5

6

Contents

1 Introduction 13

1.1 Background . 13

1.2 Related Work . 14

1.3 Statement of Contributions . 17

2 Data 19

2.1 Peatland Model . 19

2.2 Dataset Creation . 21

2.2.1 Ground Truth Simulation . 21

2.2.2 Sampling Simulation . 26

3 Stock Estimator 29

3.1 Autoencoders . 29

3.2 Model Architecture . 30

3.3 Method . 33

3.4 Experiments . 34

3.5 Results . 34

3.5.1 Smaller Dataset Overall Sampling Density Results 34

3.5.2 Larger Dataset Overall Sampling Results 38

3.5.3 Grid Based Sampling vs Uniform Random Sampling 40

3.5.4 Performance Against Baseline Kriging 42

3.6 Conclusions and Future Work . 43

7

4 Change Predictor 45

4.1 Sequential Stock Estimator . 45

4.1.1 Model Architecture . 45

4.1.2 Method . 47

4.1.3 Experiments . 48

4.1.4 Results . 48

4.2 Change Predictor . 54

4.2.1 LSTM Models for Seq-to-Seq Prediction 54

4.2.2 Model Architecture . 54

4.2.3 Method . 55

4.2.4 Experiments . 58

4.2.5 Results . 58

4.3 End-to-end Model . 67

4.3.1 Model Architecture . 67

4.3.2 Method . 67

4.3.3 Experiments . 68

4.3.4 Results . 68

4.4 Conclusions and Future Work . 74

5 Sampling Optimizer 75

5.1 Transformers . 75

5.2 Model Architecture . 76

5.3 Method . 77

5.4 Experiments . 79

5.5 Results . 79

5.6 Conclusions and Future Work . 81

6 Conclusions 85

8

List of Figures

2-1 Bog Generation Process . 21

2-2 Peatland Evolution Across Time . 22

2-3 Peatland Accrual and Convergence Across Time 23

2-4 Smaller Generated Farm Dataset . 24

2-5 Comprehensive Sampling Strategy Visualization 26

3-1 Stock Estimator Expected Input and Output 31

3-2 Stock Estimator Model Architecture 32

3-3 Results of 1% Sample on Smaller Test Set Farm 5 Timestep 97 35

3-4 Results of 5% Sample on Smaller Test Set Farm 5 Timestep 97 35

3-5 Results of 10% Sample on Smaller Test Set Farm 5 Timestep 97 . . . 36

3-6 Results of 25% Sample on Smaller Test Set Farm 5 Timestep 97 . . . 36

3-7 Loss Over Time: Grid Based Sampling vs Uniform Random Sampling 41

3-8 Uniform Random Sampling vs Grid Based Sampling Spatial Prediction

Across Time . 41

3-9 Loss for Various Models Trained at the 1%, 5%, 10%, and 25% Sam-

pling Densities . 42

4-1 Sequential Estimator Inputs and Outputs 46

4-2 Sequential Estimator Model Architecture 47

4-3 Sequential Estimator MSE over Input Lengths for Various Sampling

Strategies . 50

4-4 Sequential Estimator MSE over Sample Number for Various Sampling

Strategies . 51

9

4-5 1% URS Sequential Estimator Test Set Sequence Results 53

4-6 Change Predictor Inputs and Outputs 55

4-7 Change Predictor Model Architecture 56

4-8 MSE over Prediction Horizon Length for Various Input Lengths . . . 61

4-9 MSE over Input Data Length for Various Prediction Horizons 62

4-10 Best Performing Model Parameters (𝐿 = 10, 𝑃 = 1) Test Set Sequence

Results Earlier Timestep Example . 63

4-11 Best Performing Model Parameters (𝐿 = 10, 𝑃 = 1) Test Set Sequence

Results Later Timestep Example . 64

4-12 Worst Performing Model Parameters (𝐿 = 1, 𝑃 = 15) Test Set Se-

quence Results Earlier Timestep Example 65

4-13 Worst Performing Model Parameters (𝐿 = 1, 𝑃 = 15) Test Set Se-

quence Results Later Timestep Example 66

4-14 Infilling Prediction End-to-end Model Architecture 68

4-15 End-to-end Model Worst Performing Parameters (𝐿 = 2, 𝑃 = 5, 1%

URS) Example . 71

4-16 End-to-end Model MSE over Sample Number for Various Sampling

Strategies, 𝑃 = 1 . 73

5-1 Sampling Optimizer End-to-end Model Architecture 77

5-2 5% GBS Sampling Optimizer and End-to-end Model Example 82

5-3 5% URS Sampling Optimizer and End-to-end Model Example 83

10

List of Tables

2.1 Smaller Simulated Dataset Pixel-Wise Carbon Summary Statistics . . 24

2.2 Smaller Simulated Dataset Farm-Timestep Snapshot Carbon Summary

Statistics . 25

2.3 Larger Simulated Dataset Pixel-Wise Carbon Summary Statistics . . 25

2.4 Larger Simulated Dataset Farm-Timestep Snapshot Carbon Summary

Statistics . 25

3.1 Smaller Dataset Uniform Random Sampling Model and Kriging Results 37

3.2 Smaller Dataset Grid Based Sampling Model and Kriging Results . . 37

3.3 Larger Dataset Uniform Random Sampling Model and Kriging Results 39

3.4 Larger Dataset Grid Based Sampling Model and Kriging Results . . . 39

4.1 Sequential Estimator Test Set MSE Results 48

4.2 Change Predictor Test Set MSE Results LR = .001 59

4.3 Change Predictor Test Set MSE Results LR = .0001 60

4.4 End-to-end Model Test Set MSE Results 69

5.1 Sampling Optimizer Model Test Set MSE Results and Comparisons . 80

11

12

Chapter 1

Introduction

1.1 Background

Atmospheric carbon directly contributes to climate change with increasing carbon

levels in the atmosphere being associated with a rise in global temperatures. In order

to combat the effects of climate change, various methods of sequestering carbon have

been proposed. Soil contains and is capable of holding the largest terrestrial stock

of carbon [6] and as such soil management has become increasingly important to aid

in sequestration efforts [10]. In order to provide a financial incentive for this man-

agement and sequestration, trading carbon offsets as part of a carbon credits system

has become increasingly relevant. There exist both voluntary and compliance carbon

markets and as these markets become more widespread, accurately accounting for

sequestered carbon is imperative for a well-functioning system. However, soil carbon

measurements are extremely expensive and time intensive to collect. As estimated by

CSIRO in 2013, the cost of analyzing a single sample in lab (disregarding labor and

equipment costs) is $AUD 30 [1]. Accounting methods generally rely on sampling

soil carbon at at a discrete number of points within a region and then extrapolating

these measurements to obtain the full stock of carbon in the soil. A common recom-

mendation in Australia is to use a 25m × 25m plot of land as a sampling unit [14].

Over farms that span hundreds of acres (where 1 acre is around 4046 square meters),

thousands of samples would need to be taken. The laboratory costs alone, which by

13

themselves are a small fraction of the overall cost, are neither scalable nor feasible.

The possibility of accurately predicting soil carbon levels with selective and limited

sampling to improve cost and allow for a more viable carbon market will be explored

in this paper.

Uniform random sampling is an unbiased and common way to converge on and

estimate some variable’s true distribution, but it is both costly and unfeasible to

implement over large farms. A common approach due to the spatial correlation be-

tween areas of farms, is to split the farm into strata, grouping areas of land that have

similar characteristics to each other and theoretically similar carbon distributions as

suggested by the patent filed by Wiseman et al. [29]. Uniform random sampling is

shown to have worse results than stratified random sampling when appropriate strata

can be found [3]. Thus, more recently developed sampling strategies rely on strati-

fying farmlands into different sections usually via geographical features, minimizing

sample variance, or other machine learning techniques such as k-means [4]. After

stratification, kriging or gaussian process regression is often applied to the individual

strata to create a dense soil carbon map. However, techniques to stratify farms are

limited and currently do not have a large amount of data to inform the stratifica-

tion. Having more data can help to inform stratification which can in turn increase

prediction accuracy. Developing sampling techniques informed by data can improve

prediction accuracy while minimizing costs.

1.2 Related Work

Various organizations have developed their own methods for predicting soil organic

carbon levels at local levels through basic methods such as linear regression and

k-means clustering. Of these methods, the best linear unbiased predictor of interpo-

lated carbon from samples is kriging or Gaussian process regression. The benefit of

kriging over methods like linear regression is that spatial correlations between points

are used to interpolate values. Multiple types of kriging exist and have been ap-

plied to this problem such as ordinary kriging [28] and regression kriging (including

14

more covariate features) [22]. While the results are promising, kriging relies on the

assumption of second-order stationarity and other environmental factors can impact

the spatial covariance between two sampling points. Additionally, kriging becomes

quite computationally expensive with higher dimensions and more data points.

However, the relationship between soil carbon and other variables are not always

linear [11]. In order to account for these effects, deep learning approaches have been

developed. Convolutional neural networks have been used to predict a variety of soil

properties including soil carbon [32]. Other ensemble machine learning algorithms

such as Random Forest, Gradient boosted decision trees, and Extreme gradient boost-

ing on a combination of remote sensing data such as satellite imagery and spectral

information have also been used [30].

The above approaches rely solely on satellite data in specific areas and are limited

in their performance due to limited spectral and spatial resolution, limited quantity

of data, and challenges with spectral decomposition to accurately separate out the

signals of soil organic carbon.

Machine learning models that rely on sampled carbon data points as well as remote

sensing have been developed [15]; however these studies also suffer from a lack of data

and focus on specific areas, thus the models do not generalize well.

Few studies employ data from previous time steps to inform future predictions

- something that is essential to understanding soil carbon dynamics. Changes that

occur in soil year by year are small but manifest in greater ways in the future. In order

to accurately predict soil carbon levels and their changes, establishing and accounting

for changes over time is essential.

One study by Kakhani et al. utilized an LSTM to make predictions over time

using a base CNN with a spatial attention mechanism which outperformed the tradi-

tional Random Forest approach to this problem [9]. This approach combines satellite

imagery with climate temporal information, however the satellite imagery was not

temporal and only the climate input impacted the LSTM module. Thus while they

were able to predict soil carbon well by incorporating some temporal information,

more work remains to be done to predict changes in carbon across time.

15

Ultimately, these models are do not have enough sampled data to inform their

predictions and this data is expensive to gather.

Different sampling strategies have been developed to improve this process which

rely on stratifying farmlands either by features or by distance and sampling based on

these groupings. The recommended soil carbon sampling practice in Australia is to

divide the farm into 25m x 25m squares [14], while the NSW DECCW recommends

to choose a 25m x 25m area, divide it into 10x10 quadrants and randomly sample 10

times. Dividing a farm into equal areas leads to biased extrapolations and choosing

a specific quadrant incentivizes dishonest sequestration practices for overestimating

carbon stocks [4].

Multiple approaches have been taken to address these issues by stratifying farms in

more informed ways to reduce sampling variance and capture a more certain estimate

of the change in carbon content. Ospats is a method that optimizes stratified random

sampling by assigning discretized points on a farm to a stratum by examining the

pairwise differences between predictions and the covariances of prediction errors. The

predictions and prediction errors are drawn from an existing carbon map which is

then stratified by this metric [4]. While this method is able to to optimally allocate

strata based on prediction error, it relies on data being bootstrapped directly from

an existing carbon map with prediction errors. This carbon map is often generated

by linear regression run on previously collected data, which is also limited in scope

and thus accuracy. This is the case for many methods to determine strata and carbon

stock such as K-means [13] and multivariate regression [22]. While carbon maps can

also be determined from the cited deep learning approaches above (which account

for non linearities), the performance of these models is limited. Additionally, while

accurate stratum determination can decrease the number of samples needed for an

accurate audit, the proposed sampling methodology doesn’t take labor and travel

costs into account. More work remains to be done to analyze how mechanizable a

sampling methodology is [4].

These approaches rely on explicitly structuring predicted carbon maps into strata

through various methods to inform sampling. Other methods which rely less on stra-

16

tum determination such as balanced sampling [18] have also been evaluated on this

problem. Compared with stratified random sampling and uniform random sampling,

doubly balanced sampling performed significantly better, reducing the required sam-

ple size by 32% [18], however it is not possible to have an accurate quantification of

its uncertainty [7].

Rather than using a specific algorithm to determine stratum explicitly, we propose

a method to recommend sampling points that minimize a cost, which is a function of

the number of points as well as prediction error.

1.3 Statement of Contributions

Technically, this work hopes to accomplish four things. First, to simulate data in a

better-understood soil environment to address the lack of data available for a proof-

of-concept. Second, to develop a machine learning model to estimate soil carbon

levels at the given timestep as well as over time. Third, to predict soil carbon levels

over time. Finally, this model recommends various sampling points to be fed into the

model for enhanced future prediction. The goal is to develop a sampling approach

that gets close to the performance of stratified sampling in a way that is economically

and physically feasible. This approach does not rely on the stratification of farms

through the methods discussed above, but rather an implicit stratification, and the

model outputs a sample allocation based off of this implicit stratification.

At a higher level, the contribution of this work is to introduce a framework of

prediction and sample allocation across time which, due to the lack of temporal data

availability, has not been thoroughly researched. This work hopes to offer a proof of

concept for what is possible within the field and encourage further ground-truth data

collection based on expensive but highly informative laboratory methods.

The rest of this thesis is organized as follows: In Chapter 2, the simulated dataset,

simulation methods, and sampling strategies on this dataset are explained. Chapter 3

introduces the stock estimator model for creating a dense carbon map from samples,

including prior work, comparisons to kriging baselines, and overall results. Chapter

17

4 extends on the model introduced in Chapter 3 to produce dense carbon maps from

a sequence of samples collected across time, and predict the carbon distribution for

future timesteps. Chapter 5 extends upon this model further to output recommended

sampling locations that maximize the information gain of the previous models and

compares the output to established sampling strategies in the field and analyzes the

results for this particular dataset. Finally, Chapter 6 offers concluding remarks and

future research directions.

18

Chapter 2

Data

2.1 Peatland Model

High resolution data of soil carbon levels at different points of land in farms does

not exist publicly at a large scale. Available data is often scattered across various

publications and publicly available soil databases such as the Rapid Carbon Assess-

ment database (RaCA) [24] in the United States and the Land Use and Coverage Area

frame Survey (LUCAS) [16] in Europe. This data unfortunately hasn’t been collected

regularly. In the case of LUCAS, there is only data for the years 2009, 2012, 2015,

and 2022. The geographic distribution of this data also varies depending on the year.

While a large number of samples has been taken, these are insufficient to establish

the ground truth required to train a temporal model. In order to compensate for this

lack of data, synthetic data was generated. All analyses conducted in the sections to

follow were performed on this synthetic data.

While soil dynamics are not completely understood at a fine-grained level, the

carbon accrual in peatlands is better understood than in other systems. Carbon

accrual in peatlands is tied directly to the shape and volume of a given peat bog

relative to the height of the water table within the bog [2]. Thus, we are able to use

the volume of peat and average carbon density of a bog to estimate the carbon stock.

Using the model by Cobb et al. [2] which estimates change in peat bog shape over

time, artificial data on soil carbon stocks in peatlands over time under the assumption

19

of a uniform water table was generated.

This model developed describes the stable morphology of peat using a partial

differential equation (Equation 7 in [2]) and is written below:

∇2𝑝∞ = −⟨𝑞𝑛⟩
⟨𝑇 ⟩

(2.1)

The variable ⟨𝑞𝑛⟩ is the average net precipitation and ⟨𝑇 ⟩ is the average transmissivity.

There is a lack of data on transmissivity and net precipitation, especially for

the particular environment our simulation is based on. There are currently different

approaches to generate this data, including using an existing model such as the one

used in the Cobb et al.’s approach or training a new model using available datasets

such as the ERA5 surface air temperature, precipitation and soil moisture dataset

[21]. However, using an existing model would require further field-specific data. Thus

the decision was made to set −⟨𝑞𝑛⟩/⟨𝑇 ⟩ = 100 in the simulated data as the focus of

the paper is sampling methodology rather than simulation. Using an existing dataset

such as ERA5 could help model more realistic and varied conditions instead of just

a singular rainfall regime, and is a potential avenue for further exploration as more

granular data is collected.

An important note is that peatlands are a diverse system and their functionality

and carbon accrual can vary depending on their surrounding ecosystem. The majority

of peatlands are in temperate and boreal zones [20], but the model of [2] only suggests

a method to predict carbon flux for those in tropical zones. While such a simulation

may thus be limited, the proposed end-to-end system provides a proof of concept of

what is possible. Due to regulatory requirements such as those developed to integrate

with the European Union Emissions Trading System [27], it is expected a large dataset

will be collected in the future, and this simulation can in principle be replaced by the

collection of super-resolution empirical data.

20

Figure 2-1: Bog Generation Process

Top left: the sticky markov model used to randomly generate bog shapes; Bottom left: the
boundary of the peat bogs; Right: The smoothed model denoting the shape of the peat bogs
where the red areas denote the bog.

2.2 Dataset Creation

2.2.1 Ground Truth Simulation

In order to simulate peatland initial states, a 𝐾 × 𝐾, (𝐾 = 48), grid filled with a

random integer in the interval [-1, 1] is created. This grid is smoothed by separating

the grid into ⌊𝐾/𝐶⌋ blocks where 𝐶 represents the coarse graining factor. The 𝐶 used

was 4, resulting in 12 4x4 blocks in each dimension (width and height). Each block

is averaged over downsampling to a smaller grid of size ⌊𝐾/𝐶⌋× ⌊𝐾/𝐶⌋. In order to

slightly smooth and upsample back to the original shape, the Kronecker product is

taken between the downsampled grid and a same sized grid full of ones and additional

padding is added as needed. Finally a Gaussian filter is applied to create rounded

bog shapes as shown in Figure 2-1.

Given the initial state and boundary mask, the finite difference method was used

to incrementally solve for the solution to the stable peatland morphology within the

21

Figure 2-2: Peatland Evolution Across Time

Left to right: Bog morphology at timestep 0, 21, 42, 84, and 125 after applying the finite
difference method to solve the equation governing peat shape evolution.

boundary where the −⟨𝑞𝑛⟩/⟨𝑇 ⟩ constant was set to 100. At each timestep, each

point within the bog boundary is updated by taking the average of the neighboring

points adjusted by the source term constant driving peatland development. The

finite difference method is used to solve for the Laplacian of the bog to determine

whether the surface has satisfied the equation which governs it (2.1) and to determine

a stopping timestep for simulation.

Each step of the finite difference method was treated as an effective timestep.

While the actual change strongly depends on the water table and precipitation condi-

tions, due to the lack of data we are not accounting for these varying conditions and

rather assuming the ratio is the constant 100. Under this constant and the starting

state of the simulated peats, convergence happens after around 125 steps. Figure 2-2

depicts the evolution of the peat bog starting at timestep 0 and ending at timestep

125.

One observation to note regarding the data simulation is that the peat accrual

across time is not linear as what drives the surface development is Poisson’s equation.

Figure 2-3 shows the rate of this accrual for a generated farm in the datasets as well

as the decrease in the residual between the Laplacian of the bog surface and the

expected morphology dictated by Equation 2.1. As shown by this figure, peat accrual

flattens out after around 125 timesteps and the residual error begins to shrink much

more slowly after that, thus 125 was decided to be the stopping point for simulation.

Two datasets were generated using this method, a smaller one consisting of 125

randomly generated farms and a larger one consisting of 625 randomly generated

22

Figure 2-3: Peatland Accrual and Convergence Across Time

Left: The net carbon amount in a farm across timesteps 0 to 200. Right: The residual error
between the surface Laplacian and the expected stable morphology across time.

farms. The farms are of size 𝐾 ×𝐾, (𝐾 = 48) simulated across 𝑇 = 125 timesteps.

Let 𝒯𝑖(𝑥, 𝑦, 𝑡) represent the “ground truth” soil carbon stock of a peat bog 𝑖 at position

(𝑥, 𝑦) where 𝑥, 𝑦 ∈ [0, 𝐾 − 1] and some time 𝑡 ∈ [0, 𝑇]. The smaller dataset of

generated farms are shown in Figure 2-4 split into training, validation, and test sets

for use in later experiments.

A note is that the generated data doesn’t have explicit units, however units can

be assigned. The summary statistics on the pixel-wise carbon amount and farm-

wise carbon amount of the smaller and larger datasets are displayed in Tables 2.1,

2.2, 2.3, and 2.4 respectively. Overall the test and training sets for both dataset

have similar distributions with a few outliers evidenced by the discrepancy in the

maximum carbon per farm-timestep snapshot between the training and test sets.

As visualized by Figure 2-4, which contextualizes the model and experiment results

discussed in further chapters, much of the area in the farm snapshots contain no

carbon whatsoever. In fact, the median per pixel carbon amount is 0.

23

Figure 2-4: Smaller Generated Farm Dataset

(a) Training and Validation Set Farms (b) Test Set Farms

The randomly generated bog masses for the complete smaller simulated dataset pictured at the
final simulated timestep.The training set (left) consists of 100 farms and the test set (right) of
25. The lighter areas indicate higher soil carbon content and vice versa.

Table 2.1: Smaller Simulated Dataset Pixel-Wise Carbon Summary Statistics

Smaller Dataset Per Pixel Carbon

Mean Std. Min 25% 50% 75% Max Pixel
Observations Farms

Train Val Set 0.1712 0.2734 0.0000 0.0000 0.0000 0.2585 2.0543 29030400 100
Test Set 0.1497 0.2402 0.0000 0.0000 0.0000 0.2304 1.6949 7257600 25

This table presents the summary statistics for the carbon present at each pixel of the simulated
data for the training validation set and the test set of the smaller 125 farm dataset. Pixel
observations represents the total number of observations from the 48x48 pixels per farm across
all farms and simulated timesteps.

24

Table 2.2: Smaller Simulated Dataset Farm-Timestep Snapshot Carbon Summary
Statistics

Smaller Dataset Farm - Timestep Snapshot Carbon

Mean Std. Min 25% 50% 75% Max
Farm
Timestep
Obs.

Farms

Train Val Set 394.5013 245.3079 26.9769 201.3374 341.1628 527.6023 1457.0801 12600 100
Test Set 344.8715 223.0766 17.8296 175.8912 284.3709 517.3605 1078.8898 3150 25

This table presents the summary statistics for the aggregated carbon of each 48x48 farm snap-
shot across the 126 simulated timesteps for the training validation set and the test set of the
smaller 125 farm dataset. Farm Timestep Obs. denotes the number of farm-timestep observa-
tions.

Table 2.3: Larger Simulated Dataset Pixel-Wise Carbon Summary Statistics

Larger Dataset Per Pixel Carbon

Mean Std. Min 25% 50% 75% Max Pixel
Observations Farms

Train Val Set 0.1685 0.2696 0.0000 0.0000 0.0000 0.2539 2.3467 145152000 500
Test Set 0.1702 0.2677 0.0000 0.0000 0.0000 0.2590 2.1044 36288000 125

This table presents the summary statistics for the carbon present at each pixel of the simulated
data for the training validation set and the test set of the larger 625 farm dataset. Pixel
observations represents the total number of observations from the 48x48 pixels per farm across
all farms and simulated timesteps.

Table 2.4: Larger Simulated Dataset Farm-Timestep Snapshot Carbon Summary
Statistics

Smaller Dataset Farm - Timestep Snapshot Carbon

Mean Std. Min 25% 50% 75% Max
Farm
Timestep
Obs.

Farms

Train Val Set 394.5013 245.3079 26.9769 201.3374 341.1628 527.6023 1457.0801 12600 100
Test Set 344.8715 223.0766 17.8296 175.8912 284.3709 517.3605 1078.8898 3150 25

This table presents the summary statistics for the aggregated carbon of each 48x48 farm snap-
shot across the 126 simulated timesteps for the training validation set and the test set of the
larger 625 farm dataset. Farm Timestep Obs. denotes the number of farm-timestep observa-
tions.

25

Figure 2-5: Comprehensive Sampling Strategy Visualization

This figure presents how farm 5 of the smaller training set at timestep 97 of the simulation
is sampled for the dataset. The columns from left to right are samples taken at the 1%, 5%,
10%, and 25% densities. The top row corresponds to samples taken through uniform random
sampling (URS) and the bottom row with grid based sampling (GBS). The rightmost image is
the ground truth from which the samples are taken.

2.2.2 Sampling Simulation

Finally, in order to develop models that take in spatial carbon samples as input to

output carbon maps and recommended sampling points, the above data needs to be

sampled. The sampling strategies were chosen based on what is currently practiced

in the field today. Grid based and uniform random sampling were performed on these

generated farms at the following densities 1%, 5%, 10%, and 25% for each timestep

between 0 and 125 as shown in the example in Figure 2-5. Due to the nature of grid

based sampling for a constant sampling density, the same points are sampled at each

farm-timestep snapshot whereas for uniform random sampling each farm-timestep

snapshot will have a different set of sampling locations. Additionally, due to the

spatial constraints of grid based sampling, 16, 100, 225, and 576 samples were taken

under this strategy to be as close to 1%, 5%, 10%, and 25% of the 𝐾 ×𝐾, (𝐾 = 48)

grid without going over. This results in a larger number of samples under the uniform

random sampling regime, however the largest discrepancy is under the 5% sampling

density with 115 points for URS and 100 points for GBS.

Using this data, the prediction component of this project involves three parts:

26

estimating the stock at the current timestep, predicting the stock at future timesteps

given historical sampling data, and outputting sampling points that are optimized

with regards to cost and prediction accuracy to be covered in the next chapters.

27

28

Chapter 3

Stock Estimator

Using the simulated data, a machine learning model was trained to predict and gen-

erate a soil carbon map for a single-timestep sampling. This section is concerned

with predicting the soil carbon levels at a given timestep without additional temporal

knowledge.

3.1 Autoencoders

The problem of generating a dense carbon map from scattered samples can be framed

as a simplified image inpainting problem, where images with missing pixels are filled

in to reconstruct the image realistically. Autoencoders have been used for many

decades for feature reduction and recently many variants have been used for generative

modeling, such as image inpainting, as well [33]. The samples in the dataset and the

surrounding ground truth areas are highly spatially correlated and fit well with the

image reconstruction problem. Given some input, Autoencoders work by encoding

this data to a latent space (lower dimensional representation) and then reconstructing

the data from the latent representation.

A simple convolutional autoencoder model is used to generate a dense soil carbon

map from samples. Although more sophisticated models have been proposed such as

incorporating texture loss for more realistic refinement [31] and using partial convolu-

tions to handle irregular holes [12] (such as those present in our dataset) the purpose

29

of this section is to establish a baseline proof of concept on a more simplistic dataset

and while using some of these techniques could potentially improve performance, it

is not the focus.

Additionally it is of note that not much work has been conducted on training

models for infilling extremely sparse irregular holes. The "unmasked pixel" density

in the dataset ranges from 1% to 25% to reflect the lack of dense samples in the soil

carbon collection field today, whereas many of these models such as Liu et al.’s [12]

train on masks with a hole to image ratio of at most .5 to .6 or at least about 17% of

the image being "sampled". Many other networks don’t consider irregular holes, such

as the work by Yang et al. [31] which is trained on 128 x 128 images that have a 64

× 64 square hole at the center with 75% of the image being "sampled". This level of

sampling density is currently unattainable for soil carbon collection due to the cost.

Models that are trained to learn from a small amount of data are imperative in this

space.

3.2 Model Architecture

This stock estimator ℰ takes samples from some ground truth simulation 𝒯𝑖(𝑥, 𝑦, 𝑡)

of farm 𝑖 at some timestep 𝑡, 𝑋 𝑖,𝑡 = {𝑋 𝑖,𝑡
1 , 𝑋 𝑖,𝑡

2 , ..., 𝑋 𝑖,𝑡
𝑛 } ∈ 𝒯𝑖(𝑥, 𝑦, 𝑡) as input. 𝑋 𝑖,𝑡

is a sequence of positions (𝑥, 𝑦) of length 𝑛 which represents the locations of the

samples. These samples are reshaped into 𝐾 × 𝐾 matrix where the soil carbon

content of a sample at position (𝑥, 𝑦) corresponds directly to the row 𝑥 and column

𝑦 of the matrix. The estimator outputs a superresolution estimate of the current

carbon stock, 𝒯ℰ𝑖(𝑥, 𝑦, 𝑡) for all points on farm 𝑖 at time 𝑡 (ie: ∀𝑥, 𝑦 ∈ [0, 𝐾 − 1]).

The model ℰ has two input channels: a 𝐾 ×𝐾 empty image splatted with sampled

values from the ground-truth simulation, 𝒯𝑖(𝑥, 𝑦, 𝑡) as well as a 𝐾 ×𝐾 mask with a

1 at a position (𝑥, 𝑦) if there is a sample at that position, otherwise 0. The expected

input and output for this model is shown in Figure 3-1.

An implicit assumption made here is that the carbon stock is uniformly distributed

within the mass of peat, so that no other covariates impact the carbon estimation

30

Figure 3-1: Stock Estimator Expected Input and Output

(a) Input Image (b) Ideal Output Image

Left: The input image to the proposed stock estimator containing an empty image with uni-
form random sampled values from the ground truth simulation. Another channel masking the
samples with ones and the non sampled points with zeros is also passed in. Right: The expected
output image containing superesolution carbon estimates across the entire farm.

and the distribution of carbon in the bog is equivalent to the distribution of peat

mass. By incorporating additional data, the model can be built out to relax this

assumption.

The model is constructed from a simple convolutional encoder-decoder architec-

ture. The encoder consists of two convolutional layers with ReLU activations and a

final max pooling layer. The decoder similarily consists of a deconvolutional layer

and an additional convolutional layer with ReLU activations as seen in Figure 3-2.

An L2 norm between the input and the model output was used as the model

reconstruction loss (3.1).

ℒℰ =
1

𝐾2

𝐾∑︁
𝑥=0

𝐾∑︁
𝑦=0

⃦⃦⃦
𝒯𝑖(𝑥, 𝑦, 𝑡)− 𝒯ℰ𝑖(𝑥, 𝑦, 𝑡)

⃦⃦⃦2

(3.1)

31

Figure 3-2: Stock Estimator Model Architecture

The model architecture of the stock estimator where the yellow blocks correspond to convolu-
tional layers, the purple shading with ReLU activations, the red block to max pooling, and the
blue blocks corresponding to deconvolutional layers. The leftmost image are the samples fed
into the model and the rightmost image is the ideal reconstruction. The "K" on the bottom of
the blocks represents how the dimensions of the image change after passing through each layer
of the network. The number next to the "K" denotes the number of feature maps at each layer.

32

3.3 Method

A random 80-20 train validation split was used on the individual farm-timestep snap-

shots to separate the data. The decision was made to have a test set of bog shapes

the model hadn’t seen to prevent conflating learning with the memorization of shapes

in the training set. Consequently the final training, validation, test split is 64%, 16%,

and 20%, respectively. When feeding in the sample snapshots into the model, zero

padding was used to replace the unsampled areas.

Each model was trained for 30 epochs and the model with the lowest validation

loss was used to evaluate performance on the test set (consisting of bog shapes never

before seen by the model). The model was trained in all of the experiments with a

batch size of 32 and using the Adam optimizer with a learning rate of .001.

To establish a baseline of performance, two dimensional Gaussian process regres-

sion or kriging was also evaluated on the dataset. Gaussian process regression fits a

function to a set of data points by defining a probability distribution over the set of

possible functions and taking the mean of this distribution. In the context of this

problem, as this process relies on finding the joint multivariate normal distribution

of the sampled and unsampled areas, the choice of covariance kernel is highly specific

to the dataset and often requires tuning [8]. A common choice of kernel for spatially

related smooth data is the radial basis function kernel which was used to establish

the kriging baseline. The covariance between two points 𝑥𝑖 and 𝑥𝑗 with this kernel

is given below in Equation 3.2. 𝑑(𝑥𝑖, 𝑥𝑗) denotes the Euclidean distance and 𝑙 is the

kernel length scale.

𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝

(︂
−𝑑(𝑥𝑖, 𝑥𝑗)

2

2𝑙2

)︂
(3.2)

The bounds on the length of this kernel were determined by the dataset with a

length scale bound between almost 0 and 𝐾 × 2 (which provides an upper bound

between the distance between any two points). For smaller sampling densities (ie:

1%) an initial length scale of 4 for each dimension was set to help the model produce

better results, all other sampling densities used an initial length scale of 2 for each

33

dimension. These length scales were chosen from doing a search over integer scales 1,

2, 4, and 8 and choosing scales with the best results. The length parameter is then

optimized during fitting. The mean of the predicted distribution upon fitting is then

taken to establish the baseline prediction.

An L2 norm between the input and the model output was used as the model

reconstruction loss (3.3).

ℒℰ =
1

𝐾2

𝐾∑︁
𝑥=0

𝐾∑︁
𝑦=0

⃦⃦⃦
𝒯𝑖(𝑥, 𝑦, 𝑡)− 𝒯ℰ𝑖(𝑥, 𝑦, 𝑡)

⃦⃦⃦2

(3.3)

3.4 Experiments

In total a model was trained for each of the exhaustive combinations of sampling

strategy (uniform random sampling, grid based sampling) and sampling density (1%,

5%, 10%, 25%) on both the smaller and larger datasets. In addition for each of these

combinations, Gaussian process regression as outlined above was performed on every

sample in the datasets to generate a baseline for performance.

3.5 Results

3.5.1 Smaller Dataset Overall Sampling Density Results

Visual examples of the stock estimator results for the 1%, 5%, 10%, and 25% sampling

densities can be found in Figures 3-3, 3-4, 3-5, and 3-6 respectively.

Quantitative results for the models trained on uniform random sampling can be

found in Table 3.1 and the grid based sampling results in Table 3.2.

The loss in these tables represents the average per-pixel squared error across all

pixels in the dataset. To contextualize this against the pixel values present within

our dataset, the URS model test error is 24.2%, 5.1%, 1.6%, and 0.2% of the mean

pixel value for the 1%, 5%, 10%, and 25% sampling densities. Similarly, the GBS

model test error is 24.4%, 3.6%, 0.2%, and 0.0% of the mean for these respective

densities. Ultimately, as shown in these tables, as sample density increases so does

34

Figure 3-3: Results of 1% Sample on Smaller Test Set Farm 5 Timestep 97

This figure presents results for a 1% sample of farm 5 of the test set at timestep 97. The
columns from left to right are the input to the model, the model output, and the kriging model
output. The top row corresponds to samples taken through grid based sampling (GBS) and the
bottom row with uniform random sampling (URS). The rightmost image is the ground truth
from which the samples are taken.

Figure 3-4: Results of 5% Sample on Smaller Test Set Farm 5 Timestep 97

This figure presents results for a 5% sample of farm 5 of the test set at timestep 97. The
columns from left to right are the input to the model, the model output, and the kriging model
output. The top row corresponds to samples taken through grid based sampling (GBS) and the
bottom row with uniform random sampling (URS). The rightmost image is the ground truth
from which the samples are taken.

35

Figure 3-5: Results of 10% Sample on Smaller Test Set Farm 5 Timestep 97

This figure presents results for a 10% sample of farm 5 of the test set at timestep 97. The
columns from left to right are the input to the model, the model output, and the kriging model
output. The top row corresponds to samples taken through grid based sampling (GBS) and the
bottom row with uniform random sampling (URS). The rightmost image is the ground truth
from which the samples are taken.

Figure 3-6: Results of 25% Sample on Smaller Test Set Farm 5 Timestep 97

This figure presents results for a 25% sample of farm 5 of the test set at timestep 97. The
columns from left to right are the input to the model, the model output, and the kriging model
output. The top row corresponds to samples taken through grid based sampling (GBS) and the
bottom row with uniform random sampling (URS). The rightmost image is the ground truth
from which the samples are taken.

36

Table 3.1: Smaller Dataset Uniform Random Sampling Model and Kriging Results

Uniform Random Sampling
Model Train
MSE

Model Validation
MSE

Model Test
MSE

GPR Test
MSE

1% 0.04482 0.04648 0.03616 0.02774
5% 0.00997 0.01011 0.00851 0.00508
10% 0.00263 0.00273 0.00234* 0.00275
25% 0.00038 0.00040 0.00035* 0.00124

This table presents the stock estimator model results trained on the uniform random sampling
strategy for the smaller dataset. The rows in the leftmost column indicate the sampling density
each model was trained at. MSE stands for mean squared error and GPR stands for Gaussian
process regression. The first three columns denote the model performance on the training,
validation, and test set. The last column reports the Gaussian process regression mean squared
error on the test set. Entries with a * indicate where the model outperformed Gaussian process
regression.

Table 3.2: Smaller Dataset Grid Based Sampling Model and Kriging Results

Grid Based Sampling
Model Train
MSE

Model Validation
MSE

Model Test
MSE

GPR Test
MSE

1% 0.04565 0.04713 0.03650 0.02524
5% 0.00212 0.00219 0.01085 0.00537
10% 0.00034 0.00036 0.00035* 0.00145
25% 0.00002 0.00002 0.00002* 0.00024

This table presents the stock estimator model results trained on the grid based sampling strategy
for the smaller dataset. The rows in the leftmost column indicate the sampling density each
model was trained at. MSE stands for mean squared error and GPR stands for Gaussian
process regression. The first three columns denote the model performance on the training,
validation, and test set. The last column reports the Gaussian process regression mean squared
error on the test set. Entries with a * indicate where the model outperformed Gaussian process
regression.

37

model performance with the GBS 25% trained model reconstructing unseen data al-

most perfectly. Even under a smaller data regime, the models trained on the 10% and

up sampling density strategies under both sampling regimes were able to outperform

kriging. Due to similar performance across the board on the train, validation, and

test sets we see that the models were able to converge well without overfitting on the

bog shapes it had seen during training.

Visually, the 1% density is too sparse for the model to upsample in a realistic

manner and the results are quite pixelated under both uniform and grid-based sam-

pling. This aligns with what is expected. This sampling density is too sparse for the

model to memorize the data as many potential bogs could contain the same samples.

Although numerically it seems kriging does not perform much better than the model

at this density, visually, the model is significantly better. The models begin to pick

up on the bog shapes beginning at the 5% density mark and qualitatively the results

demonstrate features which are more characteristic of the ground truth, with the

realism increasing with sampling density.

3.5.2 Larger Dataset Overall Sampling Results

The same experiment on the smaller dataset was repeated on the larger dataset and

the results for uniform random sampling and grid based sampling can be found in

Tables 3.3 and 3.4 respectively.

Overall, while performance on the test set increased at the 5% and up level for grid

based sampling at the 10% and up level for uniform random sampling, this increase

was higher at the 5% GBS level with a 67% decrease in loss (.00736 difference or

about 4.3% of the mean pixel value in the test set) however all other increases in

performance had a MSE difference of at most .00010 (0.0% of the mean pixel value

in the test set). Simply increasing the dataset is not enough to increase performance

in this task. The following analysis however is performed on the better performing

models trained on the larger dataset.

38

Table 3.3: Larger Dataset Uniform Random Sampling Model and Kriging Results

Uniform Random Sampling
Model Train
MSE

Model Validation
MSE

Model Test
MSE

GPR Test
MSE

1% 0.04419 0.04367 0.04357 0.03274
5% 0.00943 0.00937 0.00943 0.00518
10% 0.00228 0.00226 0.00231* 0.00255
25% 0.00025 0.00025 0.00025* 0.00144

This table presents the stock estimator model results trained on the uniform random sampling
strategy for the larger dataset. The rows in the leftmost column indicate the sampling density
each model was trained at. MSE stands for mean squared error and GPR stands for Gaussian
process regression. The first three columns denote the model performance on the training,
validation, and test set. The last column reports the Gaussian process regression mean squared
error on the test set. Entries with a * indicate where the model outperformed Gaussian process
regression.

Table 3.4: Larger Dataset Grid Based Sampling Model and Kriging Results

Grid Based Sampling
Model Train
MSE

Model Validation
MSE

Model Test
MSE

GPR Test
MSE

1% 0.04475 0.04430 0.04480 0.02378
5% 0.00356 0.00350 0.00349* 0.00521
10% 0.00031 0.00031 0.00033* 0.00123
25% 0.00001 0.00001 0.00001* 0.00022

This table presents the stock estimator model results trained on the grid-based sampling strat-
egy for the larger dataset. The rows in the leftmost column indicate the sampling density
each model was trained at. MSE stands for mean squared error and GPR stands for Gaussian
process regression. The first three columns denote the model performance on the training,
validation, and test set. The last column reports the Gaussian process regression mean squared
error on the test set. Entries with a * indicate where the model outperformed Gaussian process
regression.

39

3.5.3 Grid Based Sampling vs Uniform Random Sampling

Overall from the above tables, there is a stark contrast at nearly all levels between

uniform random sampling and grid based sampling. A model trained on grid based

sampling performs around the same as a model trained on uniform random sampling

at the 1% level (with a loss of .04480 vs .04357 on the larger test set). However, past

this point sampling strategy does seem to matter. This is visually apparent in the

above figures, as the URS results appear much more pixelated and jagged than their

GBS counterparts. On the larger dataset, models trained on grid based sampling

outperform models trained on uniform random sampling for all remaining sampling

densities. The starkest contrast is at the 25% level where the URS MSE is 25 times

larger than the GBS MSE on the larger test set. This lends further empirical evidence

to how sampling location can dramatically improve results and that optimizing for

this location is especially important when sampling capacity is limited. Plotting

out the MSE over time as in Figure 3-7 illustrates this point. The dataset is split

randomly rather than temporally, yet the GBS MSE curve is much smoother than

the URS MSE curve. This graph is generated for a farm at the 10% sampling density

however, these results were observed for multiple farms at all densities. One note is

that under both sampling regimes the loss does increase over time. Because of the

way the peatland develops, it is expected that in earlier timesteps the loss is lower

as the range for peat amount at a certain pixel is a lot lower as the surface hasn’t

developed yet.

Another important note is that because the sampling locations under grid-based

sampling never change, whereas the sampling locations under uniform random sam-

pling do, this leads to predictions (in the case of URS) that depend significantly on

location and are inconsistent over time. Often, the shape of the farm that is predicted

is inconsistent from one timestep to the next, as illustrated in Figure 3-8. In the URS

column the bog shape changes based on the location of the samples whereas the GBS

results are much more consistent.

It is possible that taking in a sequence of samples rather than a single sample

40

Figure 3-7: Loss Over Time: Grid Based Sampling vs Uniform Random Sampling

The model MSE loss over simulated timesteps for a farm. Left: Results for a model trained
on the 10% GBS sample dataset. Right: Results for a model trained on the 10% URS sample
dataset

Figure 3-8: Uniform Random Sampling vs Grid Based Sampling Spatial Prediction
Across Time

This figure shows the sample input and model prediction for uniform random sampling in the
first column, grid based sampling in the second column, and the ground truth image in the
third column. The rows correspond to results at timesteps 0, 20, and 40.

41

Figure 3-9: Loss for Various Models Trained at the 1%, 5%, 10%, and 25% Sampling
Densities

This figure presents the loss for various models at different sampling densities on the larger
test set plotted on a log base 10 scale. GBS stands for grid based sampling, URS for uniform
random sampling, and GPR for Gaussian process regression.

could improve stock estimation at every timestep, leading to consistent farm carbon

boundaries across time, especially due to the differing locations covered through URS.

This idea is explored further in Chapter 4.

3.5.4 Performance Against Baseline Kriging

Figure 3-9 compares the the loss on the test set for the GBS and URS models trained

at different sampling densities and for kriging. As shown in the figure, kriging out-

performs the trained models on the same data up until the 5% point for GBS and

the 10% point for URS. At 10% the GBS trained model outperforms the kriging on

GBS data and similarly for the URS trained model against kriging on URS data. It

is important to note that although the models outperform kriging at this density, the

GBS model vastly outperforms kriging compared to the URS model at 10% with a

73% difference in error for GBS and a 9% difference for URS. This smaller difference

could potentially be rectified with more careful kernel selection.

42

A key consideration and further point of comparison is that Gaussian process re-

gression is incredibly computationally expensive, especially as the number of samples

and variables increases [19]. The process relies on matrix inversion, which has a cubic

time complexity, and while approximation methods have been derived to make the

process faster, these are not yet able to achieve scale. For example, each of the smaller

models presented above took around 30 minutes to train on a CPU and 2 minutes to

evaluate on the test set to produce predictions, with both timescales being indepen-

dent of sample density. In contrast, running the Gaussian process regression at the

1%, 5%, 10%, and 25% densities took around 2 minutes, 20 minutes, 90 minutes, and

240 minutes respectively.

3.6 Conclusions and Future Work

The model provides a less computationally expensive alternative to traditional kriging

under certain sampling regimes. Even without access to temporal information, the

models trained for the stock estimator are able to outperform the baseline kriging for

grid based sampling under the 5% sampling regime and for both grid based sampling

and uniform random sampling under the 10% sampling density regime. At the highest

sampling density of 25% the models had a loss of 0% and .1% of the mean pixel value

of the test set, successfully reproducing a dense carbon map from the samples.

As noted above, no hyperparameter tuning was conducted on the stock estimator

models. Further tuning and use of multiple random seeds could result in better overall

model performance, especially at lower sampling densities, and a clearer understand-

ing of relative performances. Currently, the model has access to the noiseless ground

truth, which is not a realistic condition. Further work should involve the addition of

noise to the simulation to be more representative of real world conditions. The model

could potentially benefit from additional depth and complexity. Additionally, as the

dataset is created as the solution to a differential equation, further research can be

conducted into using an Implicit Neural Representation to reconstruct the carbon

map more accurately for this dataset.

43

44

Chapter 4

Change Predictor

While being able to generate a carbon stock estimate at a timestep is important for

carbon accounting and regulatory compliance, being able to extend past this to also

predict the change in carbon in the future given a limited sample size can be helpful

to inform land use policy. This section proposes an end-to-end stock estimator and

change predictor which given a sampling history, generates the estimates for each

timestep in this history alongside a dense carbon map prediction for some timesteps

in the future. This task can be broken down into two smaller parts. First, given

a sequence of samples to infill these samples and second given the estimated carbon

density maps generated from the infillings to predict carbon maps in future timesteps.

Ultimately, our goal is to have the samples 𝑋 𝑖,𝑡 inputted to this end-to-end estimator

and predictor be the set of samples outputted by the sampling optimizer 𝒮 described

in the next chapter.

4.1 Sequential Stock Estimator

4.1.1 Model Architecture

The stock estimator trained in the previous chapter provides a good baseline for the

performance we can expect with infilling, as given a sequence of sampling history one

can pass in each image through the single timestep stock estimator. As discussed in

45

Figure 4-1: Sequential Estimator Inputs and Outputs

This figure presents an example input and output of the sequential estimator models. The
model takes in a sequence of samples starting at timestep t-j up until timestep t, and outputs
the soil carbon estimation for each of these timesteps.

Chapter 3, due to the new temporal dimension of data a more complicated model

architecture could leverage the temporal relations between samples for better perfor-

mance. A 3D CNN was trained to generate dense carbon maps, given a sequence of

samples. These sequential stock estimators are defined as they were in the previous

chapter, however they now take in a sequence of samples at farm 𝑖 from some timestep

𝑡− 𝑗 until some timestep 𝑡 (including sequence length one, as with the original esti-

mator) 𝑋 𝑖
𝑗,𝑡 = {𝑋 𝑖,𝑡−𝑗, 𝑋 𝑖,𝑡−𝑗+1, ..., 𝑋 𝑖,𝑡} and output a sequence of stock estimates for

each timestep from 𝑡 − 𝑗 to 𝑡, ℰ 𝑖𝑗,𝑡 = {ℰ 𝑖𝑡−𝑗, ℰ 𝑖𝑡−𝑗+1, ..., ℰ 𝑖𝑡}. The expected input and

output of this sequential stock estimator is presented in Figure 4-1. The first three

convolutional layers additionally have batch norms applied to them.

The 3D CNN model is a direct expansion of the original stock estimator in Chapter

3, where the kernels are instead 3D to perform convolutions across timesteps as well.

While the model is still a standard encoder-decoder structure, it differs from the one

presented in Chapter 3 as there are an increased number of feature maps to handle

the temporal dimension and strided convolutions are used rather than a max pooling

layer to keep more finegrained information at higher computational cost.

46

Figure 4-2: Sequential Estimator Model Architecture

The model architecture of the sequential stock estimator where the yellow blocks correspond
to convolutional layers, the purple shading with ReLU activations, and the blue blocks to
deconvolutional layers. The leftmost images are the sequence of samples fed into the model
and the rightmost images are the ideal reconstruction. The "K" on the bottom of the blocks
represents how the dimensions of each image in the sequence changes after passing through
each layer of the network. The number next to the "K" denotes the number of feature maps
at each layer.

The encoder consists of three 3D convolutional layers with ReLU activations with

increasing feature maps. There is a convolutional bottleneck layer between the en-

coder and the decoder. Finally, the decoder consists of three deconvolutional layers

to bring the representation back into a one channel sequence form as seen in Figure

4-2.

4.1.2 Method

All timesteps from the first 90% of farms from the larger training-validation set were

used for training and the remaining 10% of farms were used for spatial validation.

All farms from the larger generated test set were used for evaluation. Given an

infilling window 𝐿 = 𝑗 + 1, we divide the data for each farm into multiple pairs of

input sequences and target sequences of size 𝐿. The input sequences are the sampled

sequences and the target sequences are the corresponding ground truth dense carbon

maps. In order to split this data into sequences, an overlapping rolling window method

similar to that of the previous section (Algorithm 2) was used. In addition, random

horizontal and vertical flips were applied to the training set to augment it.

Each model in the experiments was trained for 20 epochs and the model with the

47

Table 4.1: Sequential Estimator Test Set MSE Results

1% Density 5% Density 10% Density 25% Density
L GBS URS GBS URS GBS URS GBS URS
1 0.01759 0.02032 0.00071 0.00149 0.00007 0.00038 0.00001 0.00011
2 0.01766 0.00825 0.00072 0.00037 0.00007 0.00013 0.00002 0.00005
5 0.01794 0.00179 0.00073 0.00013 0.00006 0.00007 0.00001 0.00003
10 0.01778 0.00075 0.00074 0.00009 0.00008 0.00005 0.00002 0.00003
15 0.01752 0.00057 0.00074 0.00008 0.00007 0.00005 0.00001 0.00003
20 0.01764 0.00051 0.00072 0.00008 0.00007 0.00005 0.00002 0.00003

This table presents the mean squared error of the sequential estimator on the test set for various
sampling densities, strategies and input lengths 𝐿. URS stands for uniform random sampling
and GBS stands for grid based sampling.

lowest validation loss was used to evaluate performance on the test set. All models

were trained with a batch size of 32 and using the Adam optimizer with a learning

rate of .0001. As in Chapter 3, the L2 norm between the model output and ground

truth was used for the reconstruction loss. The only difference is that this loss is

taken over the entire sequence, rather than at a single timestep (4.1).

ℒℰ =
1

𝐿×𝐾2

𝑡∑︁
𝑡=𝑡−𝑗

𝐾∑︁
𝑥=0

𝐾∑︁
𝑦=0

⃦⃦⃦
𝒯 (𝑥, 𝑦, 𝑡)− 𝒯ℰ𝑖(𝑥, 𝑦, 𝑡)

⃦⃦⃦2

(4.1)

4.1.3 Experiments

The model was trained on the exhaustive combination of sampling strategies, densi-

ties, and input lengths 𝐿 in [1, 2, 5, 10, 15, 20]. These results were compared to the

baseline established in Chapter 3 to determine the effectiveness of sequential sampling

for infilling.

4.1.4 Results

The table containing the MSE on the test set for the exhaustive parameters combina-

tions is presented in Table 4.1. Although the training:validation data split is slightly

different, first 90% of farms for training and the remaining 10% for validation vs. the

48

80:20 random split across all farm time snapshots between the models, we see that

overall this architecture greatly outperforms the one presented in Chapter 3 at the

same 𝐿 = 1 on the same test set for all sampling densities. It outperforms kriging for

all sampling densities and strategies (Tables 3.3 and 3.4). In particular, for 𝐿 = 1 the

model with the worst parameters (URS at the 1% sampling density) has an MSE of

.02032 which is 12% of the mean pixel error of the test set whereas the model with the

best parameters (GBS at the 25% density) has an overall test MSE of .00001 which

is 0% of this mean pixel error.

An observation to note is that uniform random sampling consistently outperforms

grid based sampling as soon as there are at least two historical samplings, except

for in the case of 25% sampling density where grid based sampling outperformed

uniform random sampling at all input lengths. While the general shape of the peat-

land and thus carbon distribution does not significantly vary in the dataset (which

is not necessarily the case with realistic soil carbon distrbutions), this provides a

method of leveraging uniform random sampling versus the more traditionally used

grid based sampling with historical data to achieve better carbon estimation. Figure

4-3 compares the performance of uniform based sampling and grid based sampling

with different sampling densities as the sequence input length increases. Overall as

seen from Figure 4-3, as the input length L increases model performance increases

for uniform random sampling regimes, but not for grid based sampling regimes, en-

couraging varied location sampling given historical data. However, the benefits of

increasing the historical data input for URS tapers out for 𝐿 ≥ 10, with the greatest

performance boost occuring when the input length increases from one to two.

Another note is that models trained at a lower density were able to outperform

models trained at a higher density given enough historical data. For example, uniform

random sampling at 1% was able to achieve a lower test MSE for 𝐿 ≥ 15 than grid

based sampling at the 5% level when 𝐿 ≤ 10 and uniform random sampling at the

5% level when 𝐿 = 1. However, it is important to consider the cost of gathering this

historical data. Figure 4-4 presents the mean squared error as a function of number of

samples (a function of input length, sampling strategy, and sampling density) rather

49

Figure 4-3: Sequential Estimator MSE over Input Lengths for Various Sampling
Strategies

This figure presents the log base 10 scale MSE on the test set of the sequential estimator
model for the combination of different sampling strategies and densities as the input length L
increases. URS stands for uniform random sampling, GBS stands for grid based sampling, and
the number next to the strategy represents the sampling density (1%, 5%, 10%, or 25%). URS
models are all plotted with solid lines and GBS models are plotted with dashed lines. Models
trained on the same sampling density share the same color.

50

Figure 4-4: Sequential Estimator MSE over Sample Number for Various Sampling
Strategies

This figure presents the log base 10 scale MSE on the test set of the sequential estimator model
for the combination of different sampling strategies and densities as the total number of samples
increases (also on a log base 10 scale). URS stands for uniform random sampling, GBS stands
for grid based sampling, and the number next to the strategy represents the sampling density
(1%, 5%, 10%, or 25%). URS models are all plotted with solid lines and GBS models are
plotted with dashed lines. Models trained on the same sampling density share the same color.

51

than input length 𝐿. From this figure, we see that more total samples at lower

densities are required to make up this difference and that generally higher density

sampling at a timestep is more effective; however at 230 samples (URS 5% where

𝐿 = 2 and URS 10% 𝐿 = 1) sampling at 5% outperforms sampling at 10% by .00001.

For example, we find that at URS 1% 230 samples over 10 timesteps are needed to

achieve a lower test MSE than the 115 samples gathered at one timestep for URS 5%.

Strictly speaking, as the cost of sampling is so high to solve the sequential infilling

problem this cost may not be justified. However future stock prediction is important

and the change predictor heavily depends on the sequential infilling performance

as well as the length of historical data. Thus, this error could propagate further

incentivizing the gathering of less dense historical samples, rather than a single dense

sampling as what has been traditionally done. This is explored in the last section

of this chapter, which combines the sequential estimator and change predictor into a

single end-to-end model.

A visual example of how the results of the sequential estimator change depending

on the input length 𝐿 is presented in Figure 4-5. This figure is for the models trained

on the 1% sampling density data, which is the density that showed the most improve-

ment as 𝐿 scaled. As shown in the figure, the visual jump in output from one sample

input to two sample inputs is very dramatic. With only one sample snapshot, the

model is unable to estimate the shape of the peat bog but with two sample history

snapshots, the model is able to get much closer. Even at the 1% level with only one

sampling snapshot, the result is a large improvement from the architecture in Chap-

ter 3 as visualized by Figure 3-3. Overall, as visualized and quantified, we are able

to improve on stock estimation by leveraging temporal information and reconstruct

the soil carbon map of these bogs very accurately even at extremely low sampling

densities and smaller input lengths.

52

Figure 4-5: 1% URS Sequential Estimator Test Set Sequence Results

This figure presents the results of the sequential estimator on a farm in the test set for a variety
of input lengths 𝐿. The length of the sequences have been visually cropped to 3 for conciseness
and better comparison, however the length of the model input and model output is 𝐿.

53

4.2 Change Predictor

4.2.1 LSTM Models for Seq-to-Seq Prediction

Sequence-to-sequence learning using an encoding and decoding long short term mem-

ory models (LSTMs) was first proposed by Sutskever et al. [25] with the main result

being on a language translation task. The results were successful, and efforts to use

modify this architecture to work with images for natural phenomena prediction such

as the motion of sea ice have also born fruit [17]. Similarly the problem of predicting

peat growth can also be modeled using a convolutional sequence-to-sequence LSTM

framework where the input sequence is a series of past carbon maps and the output

sequence represents future carbon map predictions. An encoder-decoder CNN-LSTM

based off of the above work was used for this change predictor seq-to-seq prediction

task.

4.2.2 Model Architecture

A change predictor 𝒫 which takes as input a sequence of superresolution estimates

ℰ 𝑖𝑗,𝑡 = {ℰ 𝑖𝑡−𝑗, ℰ 𝑖𝑡−𝑗+1, ..., ℰ 𝑖𝑡} created by the stock estimator from timestep 𝑡− 𝑗 up until

timestep 𝑡. The output of the stock estimator ℰ 𝑖𝑡 for farm 𝑖 at unspecified time 𝑡 given

samples 𝑋 𝑖,𝑡 is: ℰ [𝑋 𝑖,𝑡] = 𝒯ℰ𝑖(𝑥, 𝑦, 𝑡) ∀𝑥, 𝑦 ∈ [0, 𝐾 − 1]. The change predictor then

predicts the superesolution images of the stock for timesteps between 𝑡 and 𝑡 + ∆𝑡

denoted as 𝒯𝒫𝑖
(𝑥, 𝑦, 𝑡) for all 𝑡 ∈ [𝑡, 𝑡 + ∆𝑡]. Thus the model takes in a sequence of

length 𝐿 = 𝑗+1 of stock estimates sized 1×𝐾×𝐾 and outputs a sequence of length

∆𝑡 = 𝑃 estimate predictions.

As the purpose of the change predictor is to predict on timesteps for which samples

have not yet been gathered, the performance of this module is highly dependent on

the estimates output by the sequential stock estimator. The best possible input into

this module is the ground truth, and consequently the model was trained on this

data. A visual guide to the potential input and output of the model is in Figure 4-6.

The model architecture is an encoder-decoder CNN-LSTM containing the same

54

Figure 4-6: Change Predictor Inputs and Outputs

This figure presents an example input and output of the change predictor model. The model
takes in a sequence of stock estimates or ground truth snapshots starting at timestep 𝑡− 𝑗 until
timestep t and predicts dense carbon map from timestep 𝑡+ 1 until 𝑡+Δ𝑡

convolutional layers to the latent space as the Chapter 3 stock estimator CNN (2

convolutional layers with ReLU activations and a max pool); however, the output

of the max pooling layer is passed into an encoding LSTM, to a decoding LSTM,

to a fully connected layer before being passed through the rest of the original stock

estimator network (consisting of a deconvolutional layer and another convolutional

layer with ReLU activations) to generate an output. This output is fed back into the

decoder LSTM an additional ∆𝑡 − 1 times, where ∆𝑡 is the length of the forecast

horizon. The outputs from the decoder are stacked together to produce the final

prediction output: a 𝑃 × 1×𝐾 ×𝐾 sequence as visualized in Figure 4-7.

4.2.3 Method

The first 80% of timesteps of 90% of the farms from the larger training-validation set

were used for training. The remaining 20% of timesteps from the first 90% of farms

along with the remaining 10% of farms were used for validation. The timesteps were

split along with individual farms to allow for both temporal and spatial validation.

The test data was taken as-is, with overlap with the validation set temporally.

In order to split this data into sequences for training and evaluation two methods

were used. Given a window of historical data of size 𝐿 = 𝑗+1, and a forecast horizon

of size 𝑃 = ∆𝑡, we divide the data for each farm into multiple pairs of input sequences

of length 𝐿 and target sequences of length 𝑃 which maintain the temporal relation

55

Figure 4-7: Change Predictor Model Architecture

This figure presents the model architecture for the change predictor and how input flows through
the model. The leftmost images represent the input to the model that are fed to a CNN and
LSTM to encode the features. The final hidden and cell states of this encoding are represented
by (h, c). This alongside a seed image (the last ground truth image of the sequence) are passed
to the decoder. FC represents the fully connected layer. The dimensions at the top/bottoms
of the layers represents the size of the layer output.

56

of the data. Two methods are tried: one without overlapping windows (Algorithm

1) and one with overlapping windows (Algorithm 2) to increase data especially for a

high 𝐿 and 𝑃 .

Algorithm 1 Rolling window with no overlap
Require: 𝐿 ≥ 1
𝑖𝑛𝑝𝑢𝑡𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡𝑠← [], []
𝑖𝑖← 0
while 𝑖𝑖 ≤ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠− 𝐿− 𝑃 do

𝑖𝑛𝑝𝑢𝑡𝑠← 𝑖𝑛𝑝𝑢𝑡𝑠+ 𝑓𝑎𝑟𝑚_𝑐𝑎𝑟𝑏𝑜𝑛[𝑖𝑖 : 𝑖𝑖+ 𝐿]
𝑡𝑎𝑟𝑔𝑒𝑡𝑠← 𝑖𝑛𝑝𝑢𝑡𝑠+ 𝑓𝑎𝑟𝑚_𝑐𝑎𝑟𝑏𝑜𝑛[𝑖𝑖+ 𝐿 : 𝑖𝑖+ 𝐿+ 𝑃]
𝑖𝑖← 𝑖𝑖+ 𝐿+ 𝑃

end while

Here the farm carbon snapshots stored in farm_carbon are split into input sequences of length
L, and target sequences of length P. Inputs and targets hold the final divided sequences and
timesteps represents the total amount of simulated farm snapshots for the farm.

Algorithm 2 Rolling window with overlap
Require: 𝐿 ≥ 1
𝑖𝑛𝑝𝑢𝑡𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡𝑠← [], []
𝑖𝑖← 0
while 𝑖𝑖 ≤ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠− 𝐿− 𝑃 do

𝑖𝑛𝑝𝑢𝑡𝑠← 𝑖𝑛𝑝𝑢𝑡𝑠+ 𝑓𝑎𝑟𝑚_𝑐𝑎𝑟𝑏𝑜𝑛[𝑖𝑖 : 𝑖𝑖+ 𝐿]
𝑡𝑎𝑟𝑔𝑒𝑡𝑠← 𝑖𝑛𝑝𝑢𝑡𝑠+ 𝑓𝑎𝑟𝑚_𝑐𝑎𝑟𝑏𝑜𝑛[𝑖𝑖+ 𝐿 : 𝑖𝑖+ 𝐿+ 𝑃]
𝑖𝑖← 𝑖𝑖+ 1

end while

Here the farm carbon snapshots stored in farm_carbon are split into input sequences of length
L, and target sequences of length P. Inputs and targets hold the final divided sequences and
timesteps represents the total amount of simulated farm snapshots for the farm.

These algorithms are run on the farm-timestep snapshots once they have been

separated out as described above to form the data the models are trained and eval-

uated on. The model was trained on solely the larger of the datasets, taking in a

sequence input and producing a sequence output with one channel. Both the encod-

ing and decoding LSTM in the model used in the experiments contain 2 layers with

a hidden size of 128. Due to the simplicity of the data, no tuning of this parameter

was performed. Each model in the experiments was trained for 30 epochs and the

57

model with the lowest validation loss was used to evaluate performance on the test

set. All models were trained with a batch size of 32 and using the Adam optimizer.

While training each of the models, teacher forcing, a technique to feed the ground

truth of the model and effectively backpropagate at each timestep to prevent diver-

gence, was employed in order to accelerate model convergence. In addition, data

augmentations were applied to the training dataset, consisting of random horizontal

and vertical flips as well as rotations in order to increase spatial variety and prevent

the model from overfitting on spurious spatial features in the training set.

As in Chapter 3, the L2 norm between the model input and output was used for

the reconstruction loss. The only difference is that this loss is taken over the entire

sequence, rather than at a single timestep (4.2).

ℒ𝒫 =
1

∆𝑡×𝐾2

𝑡+Δ𝑡∑︁
𝑡=𝑡

𝐾∑︁
𝑥=0

𝐾∑︁
𝑦=0

⃦⃦⃦
𝒯 (𝑥, 𝑦, 𝑡)− 𝒯𝒫𝑖

(𝑥, 𝑦, 𝑡)
⃦⃦⃦2

(4.2)

4.2.4 Experiments

Multiple models were trained using the infrastructure described above with varying

historical input length 𝐿 and varying forecast horizon length 𝑃 . The values considered

for 𝐿 included 1, 2, 5, 10, 15, and 20 and for 𝑃 included 1, 5, 10, and 15. Additionally,

two learning rates were tested: .001, and .0001. A grid search was used to train a

model on the exhaustive combination of these hyper parameters on both the non-

overlapping and overlapping window datasets.

4.2.5 Results

The results of this hyperparameter search on both datasets trained with a learning

rate of .001 can be found in Table 4.2. The forecast horizon only goes up to 10

timesteps, as compared to 15 for the lower learning rate. As we can see from these

results, the learning rate seemed to be too large for the data with inconsistent and

surprising results. One would expect that as the prediction horizon increases that

the error also increases, however there are multiple instances where this is not the

58

Table 4.2: Change Predictor Test Set MSE Results LR = .001

Prediction Length P
1 5 10

Input
Length L No Overlap Overlap No Overlap Overlap No Overlap Overlap

1 0.00128 0.00102 0.00628 0.00024 0.00570 0.00789
2 0.00141 0.00120 0.00108 0.00024 0.01298 0.00591
5 0.00192 0.00039 0.00115 0.00245 0.00707 0.00027

10 0.00208 0.00022 0.00334 0.00022 0.01543 0.00025
15 0.00195 0.00074 0.00367 0.00042 0.01532 0.00024
20 0.00245 0.00128 0.00953 0.00033 0.02364 0.00180

This table presents the results of the hyperparameter sweep on the lengths of the inputs and
outputs of the change predictor model run with a learning rate of .001. Each column presents
the per pixel mean square error on the overlapping and non overlapping dataset for each of
the prediction horizons 𝑃 being either 1, 5, or 10. Each row in said column corresponds to the
length of the ground truth sequence input 𝐿 ranging between 1 and 20.

case (ie: when 𝐿 = 2, 𝑃 = 1 vs 𝑃 = 5 for both the overlapping and non overlapping

datasets). Training on the overlapping dataset greatly improved performance for

larger sequences when 𝐿 ≥ 10 and 𝑃 ≥ 5, for all combinations. In the no overlap

data regime when 𝐿 = 𝑃 = 1, there are a total of 50 sequences per farm, for a

total of 22500 sequences. In comparison, when 𝐿 = 20, 𝑃 = 10 there are a total

of 3 sequences per farm in the training set, for a total of 1350 sequences. Under

the overlapping data regime when 𝐿 = 𝑃 = 1, there are a total of 98 sequences per

farm, for a total of 44100 sequences and when 𝐿 = 20, 𝑃 = 10 there are a total of

70 sequences per farm, for a total of 31500 sequences. In this case, as overlapping

windows provide many more training examples equalizing the imbalance especially at

large 𝐿s and 𝑃 s, it is no surprise that increasing the available data highly improves

model performance. A noted potential consequence of using overlapping windows is

that it can quickly overfit training data, however it has not done so in this case.

When decreasing the learning rate, much more consistent and accurate results are

found. The results with a smaller learning rate of .0001 are presented in Table 4.3.

We see a similar pattern that for large 𝐿s and 𝑃 s that training on the overlapping

59

Table 4.3: Change Predictor Test Set MSE Results LR = .0001

Prediction Length P
1 5 10 15

Input
Length L No Overlap Overlap No Overlap Overlap No Overlap Overlap No Overlap Overlap

1 0.00047 0.00030 0.00140 0.00032 0.00458 0.00041 0.00978 0.00067
2 0.00056 0.00026 0.00144 0.00028 0.00400 0.00036 0.00849 0.00045
5 0.00084 0.00026 0.00170 0.00027 0.00438 0.00036 0.00856 0.00042

10 0.00138 0.00025 0.00237 0.00027 0.00537 0.00034 0.00979 0.00042
15 0.00157 0.00026 0.00307 0.00029 0.00663 0.00034 0.01089 0.00046
20 0.00220 0.00028 0.00421 0.00029 0.00783 0.00034 0.01153 0.00043

This table presents the results of the hyperparameter sweep on the lengths of the inputs and
outputs of the change predictor model run with a learning rate of .0001. Each column presents
the per pixel mean square error on the overlapping and non overlapping dataset for each of the
prediction horizons 𝑃 being either 1, 5, 10, or 15. Each row in said column corresponds to the
length of the ground truth sequence input 𝐿 ranging between 1 and 20.

dataset greatly improves test performance and the models trained on the overlapping

dataset with a smaller learning rate of .0001 better than the rest of the models at all

input and prediction lengths with the singular exception of the models trained with

the larger learning rate when 𝑃 = 5 and 𝐿 ≤ 10. In this case the largest difference

in MSE performance is .00008 which is 0.05% of the mean pixel value of the test

set, a very negligible difference. Thus the following analysis is performed on the best

performing models: models trained with overlapping data and a smaller learning rate.

The highest MSE is for unsuprisingly when we try to predict 15 timesteps ahead

with only 1 timestep worth of historical data. However, the MSE is only .00067 or

about 00.39% of the mean pixel value of the test set. The lowest MSE occurs on

the model that is trained to predict one timestep in the future with 10 timesteps

worth of historical data. However, for all input lengths the results of predicting 1 or

5 timesteps in the future are all within ±.00007 of each other. The change predictor

is able to learn the long term time trends very well for this dataset. It is of note that

the peatland only ever increases, thus the trend it is learning is not very nuanced, but

the good performance nonetheless is a positive indicator for the potential of learning

even more complicated trends as with actual soil carbon data.

Figure 4-8 outlines how the MSE changes for each of the prediction horizons as

60

Figure 4-8: MSE over Prediction Horizon Length for Various Input Lengths

This figure presents the per pixel mean squared error as the prediction horizon P increases from
1 to 5 to 10 to 15 for varying input lengths L.

61

Figure 4-9: MSE over Input Data Length for Various Prediction Horizons

This figure presents the per pixel mean squared error as the input length L increases from 1 to
20 for varying prediction horizons P.

the input length increases. Unsurprisingly, as 𝑃 increases so does the MSE for the

models. The increase almost seems to happen linearly. The largest visible effect is

when there is only one historical point of data. However for larger 𝐿s the MSEs are

clustered together more closely and the difference in MSEs could be due to variance

and longer training times could potentially rectify this.

Figure 4-9 outlines how the MSE changes for each of the prediction horizons as

the input length increases. As the above figure show, at 𝐿 = 2 there is a huge dropoff

in the mean squared error and after that the model doesn’t make large improvements

even as 𝐿 keeps increasing. The model seems to be able to determine what stage of

growth the peatland is at with only 2 historical data points and performs best when

predicting 1 and 5 timesteps out in the future.

It is possible that as 𝐿 and 𝑃 change additional hyperparameter tuning (learning

rate, batch size) would change the results outlined above; however due to limited

computational resources an exhaustive tuning was not completed.

62

Figure 4-10: Best Performing Model Parameters (𝐿 = 10, 𝑃 = 1) Test Set Sequence
Results Earlier Timestep Example

This figure presents the results of the best performing model parameters. The images in the two
leftmost columns are the input sequence labeled by the timestep. The rightmost pair of images
are the model output and the ground truth labeled accordingly. The MSE for this example is
.00013.

A visualization of the best performing model parameters (𝐿 = 10, 𝑃 = 1) on the

later timesteps of the test set is presented in Figure 4-11. The model was untrained

on all timesteps above 100. In these later timesteps, as seen in the figure, peat

accumulates much slower and the model is able to understand how much peat should

accumulate and adjust accordingly even without training on this temporal range. An

example of the model performance on earlier timesteps where the peat accumulation

is much more apparent from timestep to timestep is presented in Figure 4-10. The

model is able to predict the increase in peat accordingly with good accuracy (MSE

= .00013).

To contrast the performance of the easiest problem with the hardest: a visualiza-

63

Figure 4-11: Best Performing Model Parameters (𝐿 = 10, 𝑃 = 1) Test Set Sequence
Results Later Timestep Example

This figure presents the results of the best performing model parameters. The images in the two
leftmost columns are the input sequence labeled by the timestep. The rightmost pair of images
are the model output and the ground truth labeled accordingly. The MSE for this example is
.00024.

64

Figure 4-12: Worst Performing Model Parameters (𝐿 = 1, 𝑃 = 15) Test Set Sequence
Results Earlier Timestep Example

This figure presents the results of the worst performing model parameters on the test set. The
left column of the two image pairs represents the model output while the right represents the
ground truth. The overall per pixel MSE for this example is .00074.

65

Figure 4-13: Worst Performing Model Parameters (𝐿 = 1, 𝑃 = 15) Test Set Sequence
Results Later Timestep Example

This figure presents the results of the worst performing model parameters on the test set on an
untrained timestep range. The left column of the two image pairs represents the model output
while the right represents the ground truth. The overall per pixel MSE for this example is
.00079.

66

tion of the worst-performing parameters (𝐿 = 1, 𝑃 = 15) on an earlier time range and

on the untrained time range is presented in Figure 4-13 and in Figure 4-12 resspec-

tively. It is of note that the error increases as the output timestep gets further away

from the original, although it is difficult to pinpoint the difference visually as seen in

Figure 4-13. Another interesting note is that at the earlier timesteps when the bogs

are developing and a lot of mass is being added, the model is not able to generalize

with only one training example and infer how the mass should be incorporated, lead-

ing to cavities in regions where the dome (i.e. the maximum of the carbon content)

should be. However, the model performs much better once the bog shape has been

established without strange shapes occurring (such as in later timesteps). While it

has been pointed out that numerically, even the worst performing model’s MSE is

not significantly higher compared with the range of pixel values in the test set, these

visual figures represent qualitatively evidence of this idea.

4.3 End-to-end Model

4.3.1 Model Architecture

The end-to-end model combines both the sequential stock estimator and the change

predictor as visualized in Figures 4-2 and 4-7. However now rather than the change

predictor taking in the ground truth it takes in the stock estimates from sequential

stock estimator as shown in Figure 4-14.

4.3.2 Method

As models were already pretrained on various input lengths 𝐿 and prediction horizons

𝑃 in the previous two sections, no additional training of these models was conducted.

In order to split the larger test set into pairs of sequences consisting of inputs (samples

from 𝑡−𝑗 until 𝑡) and targets (the farm carbon ground truth from 𝑡−𝑗 until 𝑡+∆𝑡) for

evaluation, a method similar to the rolling window with no overlap algorithm was used

(Algorithm 1). However, rather than the inputs being updated by the ground truth

67

Figure 4-14: Infilling Prediction End-to-end Model Architecture

This figure presents the overall model architecture combining the sequential estimator and the
change predictor. The overall model takes in the sample snapshots as seen on the far left,
creates infillings from the sequential estimator, feeds the infillings to the change predictor, and
produces stock predictions on the far right.

farm carbon, they are updated by the samples taken at the corresponding ground

truth timestep and targets is of length 𝐿 + 𝑃 consisting of the ground truth for the

infilling and the prediction steps.

4.3.3 Experiments

To establish a baseline for performance for the end-to-end model the pretrained net-

works for the sequential infilling and the change predictor were combined and evalu-

ated end to end on the various sampling strategies and densities. The possible values

for the length of sample inputs 𝐿 and prediction horizon 𝑃 were determined by the

best performing parameters in experiments in the previous sections. For the sequen-

tial estimator the higher 𝐿 the greater the information gain, especially for URS. For

the change predictor, the values for 𝑃 which achieved the lowest test MSE were 1 and

5 for values of 𝐿 ≥ 2. Thus a grid search was conducted over the following parameters

𝐿 ∈ [2, 5, 10, 15, 20] and 𝑃 ∈ [1, 5] for all sampling strategies and densities.

4.3.4 Results

The results of the pretrained end-to-end run reporting the overall mean squared error

as well as comparison between predicting from the infills vs ground truth are presented

in Table 4.4. The infilling results have already been reported in the previous section,

68

Table 4.4: End-to-end Model Test Set MSE Results

P = 1 P = 5
URS
Sampling
Density

Overall
MSE

Infilling
Prediction
MSE

Ground Truth
Prediction
MSE

Overall
MSE

Infilling
Prediction
MSE

Ground Truth
Prediction
MSE

L = 2 1% 0.00821 0.00836 0.00025 0.00840 0.00869 0.00027
5% 0.00042 0.00054 0.00053 0.00059
10% 0.00019 0.00032 0.00029 0.00036
25% 0.00013 0.00028 0.00022 0.00029

L = 5 1% 0.00168 0.00186 0.00025 0.00179 0.00194 0.00027
5% 0.00016 0.00033 0.00024 0.00035
10% 0.00011 0.00029 0.00019 0.00030
25% 0.00007 0.00026 0.00016 0.00029

L = 10 1% 0.00066 0.00080 0.00024 0.00072 0.00087 0.00028
5% 0.00010 0.00029 0.00017 0.00032
10% 0.00007 0.00027 0.00014 0.00031
25% 0.00005 0.00026 0.00012 0.00030

L = 15 1% 0.00053 0.00078 0.00025 0.00061 0.00088 0.00029
5% 0.00009 0.00030 0.00014 0.00034
10% 0.00006 0.00028 0.00011 0.00031
25% 0.00005 0.00027 0.00010 0.00030

L = 20 1% 0.00047 0.00081 0.00027 0.00053 0.00087 0.00026
5% 0.00009 0.00032 0.00012 0.00031
10% 0.00006 0.00030 0.00010 0.00029
25% 0.00004 0.00028 0.00008 0.00027

GBS
Sampling
Density

L = 5 1% 0.00168 0.00186 0.00025 0.00179 0.00194 0.00027
5% 0.00076 0.00092 0.00083 0.00094
10% 0.00010 0.00028 0.00018 0.00029
25% 0.00005 0.00026 0.00015 0.00028

This table presents the mean squared error results of the end-to-end infilling and prediction
model on the test set. 𝑃 represents the prediction length and 𝐿 represents the input length to
infill. The overall MSE column is the sum of the infilling MSE and prediction MSE weighted
by sequence lengths 𝐿 and 𝑃 respectively. Infilling prediction MSE is the mean squared error
of just the predictor part of the end-to-end model which is fed the infilled images whereas the
ground truth prediction MSE is the MSE of predictor part fed the ideal infilled images (the
ground truth images).

69

although the exact numbers differ (but are very similar) due to the infilling test

set in this section being a subset of the test set from the earlier section. As the

infilling performance for grid based sampling doesn’t vary in choice of 𝐿 and the

prediction performance is very similar for 𝐿 ≥ 2, only the results for 𝐿 = 5 (or the

best performing parameter for infilling at the 25% and 10% sampling densities) for

GBS is reported.

As seen in Table 4.4 the prediction from infilling error is much higher than the

overall error as well as the error of predicting from the ground truth for all densities.

The performance bottleneck comes as a result of the infilling inaccuracies snowballing

downstream as the prediction length increases. Overall, while the end-to-end model

shows some divergence from the ground truth at worst (𝐿 = 2, 𝑃 = 5 at the 1% URS

sampling) the mean squared error was .00869 or 5% of the test set mean pixel value.

Over the 𝐾 × 𝐾 grid of the farm, this error compounds. As expected, the largest

divergence from the ground truth prediction results from the parameters which also

perform the worst at infilling as discussed in the Sequential Estimator section. From

the Change Predictor results, the best performance with the given architecture and

ideal ground truth infillings is a MSE of .00027. Thus the model MSE diverges by

.00842 - an increase of around 31 times the ideal. A visualization of this snowball

divergence is presented in Figure 4-15 where the model gets increasingly off based off

of the initial infill estimates.

The lowest end-to-end MSE (.00004) resulted when 𝐿 = 20, 𝑃 = 1 for URS at

the 25% sampling density. At that density with enough historical data the difference

between the infilling prediction MSE and ground truth prediction MSE is negligible.

To be precise, the MSE increases by 2%. One note is that the performance of the

sequential estimator increases as 𝐿 increases. As the overall MSE is a weighted

function of the estimator and predictor, the higher 𝐿 is compared to 𝑃 the lower the

overall MSE will be.

However, part of the problem in this space is achieving the best possible results

while minimizing the number of samples taken. The methodology for doing this is

explored more in depth in the next chapter. Given fixed sampling strategies and

70

Figure 4-15: End-to-end Model Worst Performing Parameters (𝐿 = 2, 𝑃 = 5, 1%
URS) Example

This figure presents the results of the end-to-end model worst performing parameters on the
test set. The model takes in samples and produces infills which get fed in at the next timestep
to produce predictions. The overall MSE for this example is .0054.

71

densities, Figure 4-16 presents the accuracy for the combinations of hyperparameters

as a function of number of samples taken for 𝑃 = 1 (as the MSE is across the board

lower for 𝑃 = 1.)

Unlike the Sequential Estimator, it is much clearer that sampling at a lower density

for a longer period of time can lead to better performance end-to-end than sampling

at a higher density for less time. For example, in Figure 4-16 around the 1000 sample

mark we see that URS 10% and URS 5% are able to achieve better performance than

URS 25%. There are definitely costs associated with waiting longer to take samples

especially with more complicated realistic data, however the Sequential Estimator’s

performance on this dataset evens out after around 5 timesteps worth of data for all

densities, which is just around the 1000 sample mark for both URS 5% and URS 10%.

This provides incentive to conduct historical studies while keeping the total number of

samples constant to increase performance while minimizing cost. Of course, there are

additional costs to consider with taking samples across multiple timesteps. Similar

to the Sequential Estimator, at a certain point there are diminishing returns to how

increasing the number of points sampled increases knowledge. Ideally, we would know

when to stop sampling as much due to the abundance of historical data that we have.

While no URS models were able to outperform GBS at the 25% sampling density,

other densities and sampling strategies were able to achieve a similar performance

with fewer samples lending further intuition to how varying density and location can

optimize sampling.

While the pretrained models were used above, it is possible improve the model

performance by tuning the entire end-to-end model altogether. As the change pre-

dictor was trained on the ground truth, it is unlikely that the stock estimate results

would provide additional information that could improve this part of the model. Thus

to improve the model, additional tuning can be done on the earlier infilling layers.

It is possible that information from earlier layers in the network is lost as the

sequence of samples passes across the network. For example, it might be possible

to further improve model performance by passing in sequences of 3 channel images

to the portion of the change predictor making the future predictions, including the

72

Figure 4-16: End-to-end Model MSE over Sample Number for Various Sampling
Strategies, 𝑃 = 1

This figure presents the log base 10 scale MSE on the test set of the end-to-end model for
the combination of different sampling strategies and densities as the total number of samples
increases (also on a log base 10 scale). URS stands for uniform random sampling, GBS stands
for grid based sampling, and the number next to the strategy represents the sampling density
(1%, 5%, 10%, or 25%). URS models are all plotted with solid lines and GBS models are
plotted with dashed lines. Models trained on the same sampling density share the same color.

73

original samples, sample location mask, in addition to the infillings generated by the

earlier layers of the model. This would allow the propagation of the original sample

through the change predictor (similar to U-Net) instead of simply relying on the stock

estimator performance as the current end-to-end model does.

4.4 Conclusions and Future Work

Due to limited computational resources, Gaussian process regression was not run on

the sequences for sequential infilling, carbon forecasting, or the complete change pre-

dictor. It would be helpful to establish this higher baseline for a better understanding

of learned model performance in the future.

Overall in this section we build a performant end-to-end model for carbon estima-

tion and prediction. By contrasting sampling strategies and analyzing performance,

the possibility arises of varying sampling strategy from timestep to timestep to in-

crease estimating and predictive power conditioned on historical data. Chapter 5

builds upon this infrastructure by implementing a model that recommends these vary-

ing sampling points to minimize the end-to-end model error and number of samples

to take.

74

Chapter 5

Sampling Optimizer

This chapter explores how to vary the number of samples one takes as well as their

locations based on historical data to better increase predictive power and minimize

costs compared to traditional methods where sampling methods are more static. This

chapter proposes an end-to-end machine learning model to accomplish this.

5.1 Transformers

Transformers were first introduced in 2017 by Vaswani et al. [26]. By utilizing the

concept of self-attention, the different parts of the model input are able to be weighed

differently to produce an output. This paper designed transformers for sequential data

(being particularly performant on language translation tasks) and soon after the con-

cept of a vision transformer was introduced in 2020 by Dosovitskiy et al. [5] to perform

self-attention on images by transforming an image into a sequence of image patches

for direct input to a pure transformer rather than relying on convolutional layers. In

general, there has not been much related work with regards to using machine learning

for sampling optimization. However, the concept of self-attention translates smoothly

to understanding which areas of the farm need additional attention and samples for

information gain. The sampling optimizer leverages this vision transformer architec-

ture to attend to areas of the sampling grid that would be beneficial to sample from

given the areas that have already been sampled from.

75

5.2 Model Architecture

This sampling optimizer 𝒮 takes in some sampling history of the farm from 𝑗

timesteps ago up to time 𝑡 − 1, 𝒳 𝑖
𝑗,𝑡 = {𝑋 𝑖,𝑡−𝑗, 𝑋 𝑖,𝑡−𝑗+1, ..., 𝑋 𝑖,𝑡−1} and outputs an

estimate �̂� 𝑖,𝑡 = {�̂� 𝑖,𝑡
1 , �̂� 𝑖,𝑡

2 , ..., �̂� 𝑖,𝑡
𝑛 } of the cost-optimal sample to apply in the cycle

at current time 𝑡. �̂� 𝑖,𝑡 is a sequence of positions (𝑥, 𝑦) of unspecified length 𝑛 which

represents the locations of the next samples to collect. In other words, a sampling

history will be passed into the model to generate the optimal sampling points. The

optimal sampling points will be determined through minimizing the prediction error

(i.e., use the samples gathered at the recommended sampling points in the next

timestep as input to the end-to-end change predictor and compare the results against

the known ground truth) as well as cost of sampling (i.e., regularizing on the number

of points outputted).

At a high level, the sampling optimizer consists of a module that takes in a sam-

pling history and outputs a snapshot of the samples to take at the current timestep.

Then given those samples and the sampling history, the end-to-end change predictor

model is able to output the dense carbon map from time 𝑡− 𝑗 to 𝑡+∆𝑡 consisting of

the infilled samples and future time predictions. This is visualized in Figure 5-1. In

the case of the simulated dataset, there is access to the ground truth sample values

for training the sampling optimizer but in real time the user would need to take the

sample locations outputted by the optimizer, sample at these locations, then plug the

sampling history with the new sample values into the separate pretrained end-to-end

change predictor. That is to say the model behavior is different when training and

evaluating on known ground truths vs when optimizing for locations in the absence

of ground truth. When training and evaluating as there is access to the ground truth,

the model is able to "sample" at the recommended locations and generate the rest of

the output for the end-to-end change predictor, as well as back propagate the average

mean squared error across the entire network.

The sequential estimator and change predictor architectures have already been

described in the previous chapter. The more detailed architecture for the sampling

76

Figure 5-1: Sampling Optimizer End-to-end Model Architecture

This figure presents the higher level model architecture of the end-to-end sampling optimizer.
The overall model takes in the sampling history on the far left to output a recommended
sampling. This is concatenated with the model input to become input for the rest of the model.

optimizer module is as follows. As, it is important to identify parts of the 𝐾 ×

𝐾 grid that require more "attention", a vision transformer as described above was

used to generate a mask of size 𝐾 × 𝐾 of where samples at timestep 𝑡 should be

taken. The model takes in a sequence of samples which are transformed into a larger

sequence of patches by using a convolutional layer. The model architecture consists

of a convolutional layer to convert each patch to an embedding. This embedding

along with the positional encoding of each patch is passed into a transformer encoder

(the encoder portion of the full transformer proposed by Vaswani et al. [26].) The

positional encoding of each patch is a learned parameter. The output of this encoder

is then aggregated across the sampling history timesteps by taking the mean. The

aggregated embedding is passed through a final linear layer for reshaping with a

Sigmoid activation function to produce the final mask of 0s and 1s.

5.3 Method

From the previous Chapter results, sampling at the 10% or 25% density provides a lot

of information such that additional points don’t result in that huge of an increase in

performance. Additionally for 𝐿 = 𝑗 timesteps, when 𝐿 ≥ 5, performance increases

much slower. Thus, the model is trained on sampling histories of length 𝐿 = 1 at the

5% density for an initial proof of concept.

77

In order to split the data into sequences for training and evaluation, the first

90% of farms were used from the larger training validation set for training and the

remaining 10% of farms were used for validation. The data was then separated into

sample sequences of size 𝐿 + 1 and ground truth target sequences of 𝐿 + 2 for the

infilling and predictions using an overlapping window method similar to as described

in Algorithm 2. In addition, data augmentations were applied to the training dataset,

consisting of random horizontal and vertical flips to increase spatial variety.

Due to the image being small there was room for more computational resources.

Thus each image was split into patches of size 4 in the patch embedding resulting in

a sequence of 144 patches per image. The transformer encoder portion of the model

consists of 6 encoding layers with an embedding dimension of 128, 8 attention heads,

and a final MLP layer with dimension 256.

As an end-to-end model for infilling and prediction has already been trained from

the previous Chapter, the weights of this end-to-end change predictor were loaded

in the sampling optimizer to speed up training time. Each model was trained for 20

epochs and the model with the lowest validation loss was used to evaluate performance

on the test set. All models were trained with a batch size of 32, the Adam optimizer,

and a learning rate of .0001.

The loss for this sampler optimizer is the combination of the losses of the sequential

estimator, the change predictor, and also a regularization term on the number of

samples the optimizer outputs. To encourage the optimizer to output fewer samples

but not completely go to 0, a ReLU function was applied over the difference between

the number recommended points and the average number of points per timestep in

the sampling history fed into the optimizer. The cost associated to each timestep t

for individual farms is thus:

ℒ𝒮 = 𝛼ℒℰ + 𝛽ℒ𝒫 + 𝜆

(︂
𝑙𝑒𝑛(�̂�)− 𝑙𝑒𝑛(𝒳)

𝐿

)︂
(5.1)

The values of 𝛼, 𝛽, 𝛾 are tunable and depend on details such as laboratory costs,

and carbon credit prices. The model was trained with preliminary values of 𝛼 = 𝛽 = 1

78

and 𝜆 = .001.

Altogether, the user is able to input samples (either collected through their meth-

ods our recommended by our system) to generate the expected soil carbon map for

current and future timesteps. Suggested sampling points will also be outputted which

when sampled at will result in an efficient way to accurately account for the carbon

stock on the farm.

5.4 Experiments

The choice of starting sampling strategy can also be important. To understand if/how

the spatial location of the initial historical samples impacts the model above was

trained on starting samples from both uniform random sampling and grid based

sampling.

The recommended sampling points of the model are plugged back into the pre-

trained end-to-end infiller and predictor to generate the MSE. The end-to-end MSE

is then compared between the new recommended sampling sampling strategy and the

previous URS/GBS from the previous chapter where 𝐿 = 2 (combining the historical

input and sampling optimizer output) and 𝑃 = 1.

5.5 Results

How the sampling optimizer performs when plugging in the recommended sampling

points concatenated with the history into the end-to-end model with preloaded weights

for 𝑃 = 1 can be found in Table 5.1.

Overall we see that for URS the sampling optimizer was effective at reducing the

mean samples per sequence; however, the test MSE was much higher for the same

sequence length. An interesting note is that although the model’s recommended

points were unable to outperform the 5% URS model without looking at the number

of samples, the end-to-end model trained on 1% URS data has a test MSE of .00168

at 115 samples (𝐿 = 5) and a test MSE of .00066 at 230 samples (𝐿 = 10) per Table

79

Table 5.1: Sampling Optimizer Model Test Set MSE Results and Comparisons

Sampling Strategy 5% Density Test MSE Mean Samples
Per Sequence

URS Opt 0.00097 160.66280
URS No Opt L = 2 H = 0 0.00042 230.00000
GBS Opt L = 1 H = 1 0.00040 432.18340
GBS No Opt L = 2 H = 0 0.00078 200.00000
GBS No Opt L = 5 0.00076 500.00000

This table presents the results of the end-to-end model run on the various sampling strategies.
The sampling optimizer here is trained on the 5% density level as are the rest of the strategies.
URS stands for uniform random sampling and GBS stands for grid based sampling. Opt means
that the sampling optimizer was used to generate samples for the model and vice versa for No
Opt. L denotes the sampling snapshots inputted to the model generated through either URS or
GBS and H denotes the sampling snapshots generated by the sampling optimizer given L. The
Test MSE column denotes the end-to-end model performance with the inputted or generated
sampling sequence on the test set when P = 1. The final column denotes the mean number of
samples taken per sequence.

4.4. Thus, the sampling optimizer output is able to place us somewhere between these

results however looking at Figure 4-16 the trend line for the 1% is still much higher

than the 5% URS line. Ultimately, the optimizer did not produce better results for

the URS.

While we were unable to see improvements for URS at this level, there were

improvements for GBS. As discussed in the previous chapter, regardless of increasing

the number of snapshots for GBS the test error did not decrease as samples were

drawn from the same location every time. While the optimizer did increase the

number of samples taken, the MSE achieved was lower than the performance of GBS

with 200 samples per sequence and GBS with 500 samples per sequence.Additionally,

at the 10% density (450 samples) a model trained on GBS is able to achieve a test

loss of .000142 as pictured in Figure 4-16, which is a much better result given the

comparable number of samples. Thus, even though there is an improvement when

comparing against the same density with longer histories resulting in more samples,

by comparing against a higher density with around the same number of samples we

80

see this optimization isn’t as efficient as it could be. An additional avenue of work

would be to compare the sampling optimizer to a combination of established strategies

ie: GBS and URS together.

For context on what the sampling optimizer is outputting, Figures 5-2 and 5-3

present the output of the sampling optimizer alongside the end-to-end model for an

example sequence. As seen in Figure 5-2, the sampling optimizer chooses points that

were not initially sampled in the original sample to sample next. This shows some

promise. The shape of the selected samples is quite interesting as it closely resembles

grid based sampling. However, while the performance improves as a result of using

the sampling optimizer output, the fact that the sampling optimizer is sampling

straight vertical lines across the farm is not quite as efficient. For URS, the results

are a little unexpected. Theoretically one would expect the clear holes in the initial

sample to be what the model focuses on. There is some variance in the URS sample

recommendations compared to GBS but there is still a preference for the model to

choose sample along the same vertical column.

5.6 Conclusions and Future Work

Overall, while the ViT did demonstrate how lowering the number of samples taken by

varying their location can result in more efficient sampling there are a couple of areas

of improvement for the model. First, the model tends to output around the same

distribution of points for inputs that are the same. Additionally, the model tends

to output sampling recommendations in the same column as each other even when

it results without much of an improvement in performance. Modifications could be

made to the attention mechanism to ensure that the attention scores vary sufficiently

from point to point in the graph. Additional fine tuning of the model hyperparameters

and potentially longer training could help improve model performance. Additionally,

an experiment that would be interesting to run is how the sampling optimizer changes

its recommendations as it is fed a history of its own recommendations. A patch size

of 4 was chosen to still maintain some fine grained control but the hope was to classify

81

Figure 5-2: 5% GBS Sampling Optimizer and End-to-end Model Example

This figure presents the results of the sampling optimizer trained on 5% GBS data in the first
column second row. This sample along with the initial sample is inputted into the fine-tuned
end-to-end model to produce the model output in the second column.

82

Figure 5-3: 5% URS Sampling Optimizer and End-to-end Model Example

This figure presents the results of the sampling optimizer trained on 5% URS data in the first
column second row. This sample along with the initial sample is inputted into the fine-tuned
end-to-end model to produce the model output in the second column.

83

each patch as to be sampled or not in the next timestep, this could become more fine

grained by classifying each pixel by decreasing the patch size to 1. This would be

extremely computationally expensive though. Finally, considering other architectures

could improve this result as well.

There is still a lot of exciting work remaining for this portion of the project and

larger improvements in the model will lend further credibility to this approach and

less of a reliance on traditional sampling methods in the future.

84

Chapter 6

Conclusions

The problem of maximizing information gain from chosen samples is not new and

remains very important across a variety of fields. With regards to soil carbon seques-

tration where the costs of each and every sample is so high the ability to maximize

information gain from every sample is imperative especially as the problem of carbon

sequestration to prevent global warming becomes more and more pressing.

One of the largest barriers to this is the lack of data in the field. In order to

counter this and develop a proof of concept system for estimation, prediction, and

optimization we simulated our own farm scale carbon dataset for various farms across

time.

This thesis has demonstrated across Chapter 3 and 4 that even under a sparse

sampling regime it is possible to accurately reconstruct an esimation of a soil carbon

map given adequate data. Using 2D and 3D CNNs, we were able to outperform

the traditional Gaussian process regression that is performed in this field on our

dataset with only one timestep of historical data. Additionally, we demonstrate the

importance of gathering historical data to further improve carbon estimation. We

demonstrate that without historical data, grid based sampling outperforms uniform

random sampling at the same densities however with historical data uniform random

sampling was able to surpass grid based sampling performance. By gathering even

two timesteps of data we were able to demonstrate a huge decrease in the average

per pixel mean squared error and at the higher end the mean squared error was 0%

85

of the average pixel value.

However, estimation is not the only pressing problem in this space. Oftentimes

carbon contents from previous timesteps dictate the behavior of future timesteps.

In this thesis we also demonstrate the capability of encoder decoder LSTMs to ac-

curately predict the evolution of soil carbon in the future for our dataset given the

ground truth. This prediction module was combined with the previous estimation

module to create an end-to-end model that given a sequence of samples at various

densities was able to infill these samples to create dense carbon maps and from these

infillings generate predictions without too much divergence from the ground truth

with sufficient sampling history.

The final problem this thesis attempts to solve is the problem of how to make

more informed sampling decisions. Traditionally samples are taken after stratifying

farmlands and applying grid based sampling across these stratum. This thesis pro-

poses a novel way of choosing where to sample by developing an attention based

model to recommend sampling points while minimizing the number of points needed

to sample. While improvements were not found for uniform random sampling, some

improvements were found for grid based sampling with regards to both the number

of samples to be gathered as well as the average mean squared error. Ultimately, this

model could benefit from additional hyperparameter tuning as well as potentially an

architecture overhaul for better performance.

Overall, while the dataset used was simulated, the results are promising. With

actual ground level samples as well as additional covariates, such as elevation, precip-

itation, or soil type, across time, the results will be more applicable. However, this

thesis provides a foundation for integrating this additional data that does not yet

exist to better understand the evolution of soil carbon across time under sparse sam-

pling regimes as well as a methodology for deciding where to sample given previous

information that traditional methods do not.

86

Bibliography

[1] Adrian Chappel, Jeff Baldock, and Raphael Viscarra Rossel. Sampling soil or-
ganic carbon to detect change over time. CSIRO, Black Mountain, ACT, 2013.

[2] Alexander R. Cobb, Alison M. Hoyt, Laure Gandois, Jangarun Eri, René Dom-
main, Kamariah Abu Salim, Fuu Ming Kai, Nur Salihah Haji Su’ut, and
Charles F. Harvey. How temporal patterns in rainfall determine the geomor-
phology and carbon fluxes of tropical peatlands. Proceedings of the National
Academy of Sciences, 114(26):E5187–E5196, 2017.

[3] William Gemmell Cochran. Sampling techniques. john wiley & sons, 1977.

[4] J.J. de Gruijter, A.B. McBratney, B. Minasny, I. Wheeler, B.P. Malone, and
U. Stockmann. Farm-scale soil carbon auditing. Geoderma, 265:120–130, 2016.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. CoRR,
abs/2010.11929, 2020.

[6] Katerina Georgiou, Robert B Jackson, Olga Vindušková, Rose Z Abramoff,
Anders Ahlström, Wenting Feng, Jennifer W Harden, Adam F A Pellegrini,
H Wayne Polley, Jennifer L Soong, William J Riley, and Margaret S Torn. Global
stocks and capacity of mineral-associated soil organic carbon. Nat. Commun.,
13(1):3797, July 2022.

[7] Anton Grafström and Lina Schelin. How to select representative samples. Scan-
dinavian Journal of Statistics, 41(2):277–290, 2014.

[8] Jochen Görtler, Rebecca Kehlbeck, and Oliver Deussen. A visual exploration
of gaussian processes. Distill, 2019. https://distill.pub/2019/visual-exploration-
gaussian-processes.

[9] Nafiseh Kakhani, Moien Rangzan, Ali Jamali, Sara Attarchi, Seyed Kazem
Alavipanah, and Thomas Scholten. Soilnet: An attention-based spatio-temporal
deep learning framework for soil organic carbon prediction with digital soil map-
ping in europe, 2023.

87

[10] R. Lal. Soils and sustainable agriculture. a review. Agronomy for Sustainable
Development, 28(1):57–64, March 2008.

[11] RM Lark. Soil–landform relationships at within-field scales: an investigation
using continuous classification. Geoderma, 92(3-4):141–165, 1999.

[12] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, and
Bryan Catanzaro. Image inpainting for irregular holes using partial convolutions,
2018.

[13] A. B. McBratney and J. J. de Gruijter. A continuum approach to soil classi-
fication by modified fuzzy k-means with extragrades. Journal of Soil Science,
43(1):159–175, 1992.

[14] Neil McKenzie, P Ryan, P Fogarty, and J Wood. Sampling, measurement and
analytical protocols for carbon estimation in soil, litter and coarse woody debris.
National Carbon Accounting System Technical Report No. 14, 2000.

[15] Xiangtian Meng, Yilin Bao, Yiang Wang, Xinle Zhang, and Huanjun Liu. An ad-
vanced soil organic carbon content prediction model via fused temporal-spatial-
spectral (tss) information based on machine learning and deep learning algo-
rithms. Remote Sensing of Environment, 280:113166, 2022.

[16] A. Orgiazzi, C. Ballabio, P. Panagos, A. Jones, and O. Fernández-Ugalde. Lucas
soil, the largest expandable soil dataset for europe: A review. European Journal
of Soil Science, 69(1):140–153, Nov 2017.

[17] Zisis Petrou and Yingli Tian. Prediction of sea ice motion with convolutional long
short-term memory networks. IEEE Transactions on Geoscience and Remote
Sensing, PP:1–12, 04 2019.

[18] Eric Potash, Kaiyu Guan, Andrew J. Margenot, DoKyoung Lee, Arvid Boe,
Michael Douglass, Emily Heaton, Chunhwa Jang, Virginia Jin, Nan Li, Rob
Mitchell, Nictor Namoi, Marty Schmer, Sheng Wang, and Colleen Zumpf. Multi-
site evaluation of stratified and balanced sampling of soil organic carbon stocks
in agricultural fields. Geoderma, 438:116587, 2023.

[19] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[20] Kelly Ribeiro, Felipe S Pacheco, José W Ferreira, Eráclito R de Sousa-Neto,
Adam Hastie, Guenther C Krieger Filho, Plínio C Alvalá, Maria C Forti, and
Jean P Ometto. Tropical peatlands and their contribution to the global carbon
cycle and climate change. Glob. Chang. Biol., 27(3):489–505, February 2021.

[21] Copernicus Climate Change Service. Era5 hourly data on single levels from 1940
to present, 2018.

88

[22] Gregorio C. Simbahan, Achim Dobermann, Pierre Goovaerts, Jianli Ping, and
Michelle L. Haddix. Fine-resolution mapping of soil organic carbon based on
multivariate secondary data. Geoderma, 132(3):471–489, 2006.

[23] Pete Smith, Jean-Francois Soussana, Denis Angers, Louis Schipper, Claire
Chenu, Daniel P. Rasse, Niels H. Batjes, Fenny van Egmond, Stephen Mc-
Neill, Matthias Kuhnert, Cristina Arias-Navarro, Jorgen E. Olesen, Ngonidza-
she Chirinda, Dario Fornara, Eva Wollenberg, Jorge Álvaro Fuentes, Alberto
Sanz-Cobena, and Katja Klumpp. How to measure, report and verify soil car-
bon change to realize the potential of soil carbon sequestration for atmospheric
greenhouse gas removal. Global Change Biology, 26(1):219–241, 2020.

[24] Soil Survey Staff. Rapid carbon assessment (raca) project. United States De-
partment of Agriculture, Natural Resources Conservation Service, Jun 2013.

[25] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks, 2014.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017.

[27] Jonathan Verschuuren. Achieving agricultural greenhouse gas emission reduc-
tions in the eu post-2030: What options do we have? Review of European,
Comparative amp; International Environmental Law, 31(2):246–257, June 2022.

[28] Alexandre M.J.-C. Wadoux, Benjamin P. Marchant, and Richard M. Lark. Ef-
ficient sampling for geostatistical surveys. European Journal of Soil Science,
70(5):975–989, 2019.

[29] Marissa Wiseman, Michael Patrick Cope, Cristine L.S. Morgan, and Jason Paul
Ackerson. Soil sampling methods and systems.

[30] Boqiang Xie, Jianli Ding, Xiangyu Ge, Xiaohang Li, Lijing Han, and Zheng
Wang. Estimation of soil organic carbon content in the ebinur lake wetland,
xinjiang, china, based on multisource remote sensing data and ensemble learning
algorithms. Sensors, 22(7), 2022.

[31] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li. High-
resolution image inpainting using multi-scale neural patch synthesis, 2017.

[32] Lin Yang, Yanyan Cai, Lei Zhang, Mao Guo, Anqi Li, and Chenghu Zhou. A
deep learning method to predict soil organic carbon content at a regional scale
using satellite-based phenology variables. International Journal of Applied Earth
Observation and Geoinformation, 102:102428, 2021.

[33] Junhai Zhai, Sufang Zhang, Junfen Chen, and Qiang He. Autoencoder and its
various variants. In 2018 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 415–419, 2018.

89

